
Buddy API 3.6

Buddy API contains an Xtra for use with Macromedia Director and Authorware which allows 
access to Windows API functions. 

Installation  
Distributing your applications   
Loading Buddy API Functions  
What's new in this release  

Buddy API contains the following the following functions:

Information functions   System functions  
File functions   Window functions  
Registration functions  

Alphabetical function list  

Contents  



Installation
Buddy API contains 2 files - Budapi.x32 32 bit Xtra

Budapi.hlp this help file

With Version 3.6, development of the Authorware only U32 has stopped. This version and all 
future versions will be release as an Xtra only.

With Version 3.4, development of the 16 bit version has stopped. This version and all future 
versions will be released as 32 bit only. You can download the last 16 bit version (3.31) from 
http://www.mods.com.au/budapi/download.htm. This help file includes information about the 
16 bit version.

Xtra installation
The Xtra version can be used with Director 5 and later and Authorware 4 and later. Place the 
Xtra into the Xtras folder inside your Director folder or Authorware folder. The u32 file is not 
used in the Xtra version.

Important Information
You should carefully read the following terms and conditions before using this software. Your 
use of this software indicates your acceptance of these terms and conditions.

Disclaimer of Warranty
This software and the accompanying files are provided "as is" and without warranties as to 
performance of merchantability or any other warranties whether expressed or implied.

The user must assume the entire risk of using Buddy API.

Copyright
Buddy API Copyright © 1995-2003 Magic Modules Pty Ltd
All rights reserved.

Contact
Gary Smith
Internet: gary@mods.com.au

The latest version of Buddy API is available at 

http://www.buddyapi.com

23rd May 2003

Contents  



Loading Buddy Functions

Xtra - Director
After placing the Xtra in your Xtras folder and restarting Director, the Buddy API functions 
will become available for use. All the functions are global functions and can be called 
without using the lingo openxlib or new commands. You can enter code as provided in this 
help file in any Director script. You can also test the functions in the Message window.

Xtra - Authorware
After placing the Xtra in your Xtras folder and restarting Authorware, the Buddy API functions
will become available for use. You can type the code directly into a calculation icon. The list 
of functions can be viewed by selecting 'Functions' from the 'Window' menu, then choosing 
'Xtra BudAPI' from the category list.

Contents  



Distributing your applications

Xtra distribution
Previous versions of Buddy API consisted of two files - an Xtra and a DLL. This version does 
not contain the dll file.

There are a number of ways the Xtra can be distributed with your projector.
You can place the Xtra in a folder called ‘Xtras’ in the same folder as your application. This is
the recommended method, particularly if your application will run from a slow medium such 
as CD-ROM. This method will provide the fastest loading application, because the Xtra will 
not need to be extracted every time your application runs.

In Director 6 and later, you can embed the Xtra into the projector. Embedding the Xtra in 
Director 6 and 6.5 is not recommended - these versions of Director have problems in this 
area. Embedding in Director 7 and later is much more reliable. To embed the xtra, you need 
to manually add it to the list of Xtras to be embedded. Choose the Modify -> Movie -> Xtras 
menu. A dialog box will appear. Click the ‘Add’ button, and select budapi.x32.    In Director 
7/8, make sure that the Include in projector    option is checked. In Director 6/6.5, you also 
need to check the Check movie for xtras    option when creating a projector. If you want to 
make a Director 6/6.5 16 bit projector and embed the Xtra, you will need to add this line to 
the xtrainfo.txt file located in the Director folder.

[#nameW32:"Budapi.x32", #nameW16:"Budapi.x16", #nameFAT:"Buddy API Xtra", 
#type:#lingo]

Contents  



Function list

A - D          E - F          G - P          R - S          T - X 

ActivateWindow   activates the specified window
ActiveWindow   returns the active window
AddSysItems   adds System menu, min and max boxes
Administrator   returns Administrator status
Aw2Window   returns the Authorware presentation window
ChildWindowList   returns a list a window's child windows
ClipWindow   removes edges from window
CloseApp   closes the application owning a window
CloseWindow   closes a window
CommandArgs   returns the command line arguments the application was started 

with
ComputerName   returns name of computer
CopyFile   copies a file.
CopyFileProgress   copies file while displaying progress bar.
CopyText   copies text to the clipboard
CopyXFiles   copies multiple files with wildcard matching.
CopyXFilesProgress  copies multiple files while displaying progress bar.
CpuInfo   gets information (type, speed) about the processor installed
CreateFolder   creates a new folder
CreatePMGroup  creates a Program Manager or Start Menu group
CreatePMIcon  creates a Program Manager or Start Menu icon
DecryptText   decrypts a text string
DeleteFile   deletes a file
DeleteFolder   deletes an empty folder
DeleteIniEntry   deletes entry from an .ini file.
DeleteIniSection   deletes section from an .ini file.
DeletePMGroup  deletes a Program Manager or Start Menu group
DeletePMIcon  deletes a Program Manager or Start Menu icon
DeleteReg   deletes Registry entry
DeleteXFiles   deletes files with wildcard matching
DisableDiskErrors   disables the 'Drive not ready' error message
DisableKeys   disables/enables key presses
DisableMouse   disables/enables mouse clicks
DisableScreenSaver   disables/enables the screen saver
DisableSwitching   disables/enables task switching
DiskInfo   gets information (type, size, name, number) about a disk
DiskList   returns list of available drives

Information functions   System functions  
File functions   Window functions  



Registration functions  

Contents  



Function list

A - D          E - F          G - P          R - S          T - X 

EjectDisk  ejects CD
EncryptFile   encrypts/decrypts a file
EncryptText   encrypts a text string
Environment   returns an environment variable
ExitWindows   exits or restarts Windows
FileAge   returns the age of a file
FileAttributes   returns the attributes of a file
FileDate   returns the date of a file
FileDateEx   returns the date of a file/folder
FileExists   checks whether a file exists
FileList   returns a list of files in a folder.
FileSize   returns the size of a file
FileVersion   returns the version of a file.
FindApp   finds the application associated with a file type
FindClose   finishes a search started with baFindFirstFile
FindDrive   searches all drives for a specified file
FindFirstFile   searches for the first file matching a specification
FindNextFile   searches for the next file matching a specification
FindWindow   finds a window with given title or class
FlushIni   forces Windows to write an ini file to disk.
FolderList   returns a list of folders in a folder.
FolderSize   returns the size of a folder.
FontList   returns a list of installed fonts
FontStyleList   returns a list of available styles for a truetype font
FontInstalled   checks whether a font is installed
FolderExists   checks whether a folder exists
FreeCursor   allows the cursor to move anywhere on the screen

Information functions   System functions  
File functions   Window functions  
Registration functions  

Contents  



Function list

A - D          E - F          G - P          R - S          T - X 

GetDisk   displays a disk selection dialog.
GetFilename   displays a file selection dialog.
GetFolder   displays a folder selection dialog.
GetVolume   gets the current sound volume of wave and midi files and audio CD
GetWindow   returns a window related to another window
HideTaskBar   shows/hides the Win95 task bar
InstallFont  installs TrueType or bitmap font
KeyBeenPressed  checks whether a key has been pressed
KeyIsDown  checks whether a key is being held down
LongFileName   returns the long version of a short file name
MakeShortcut   creates a Win95/NT shortcut
MakeShortcutEx   creates a Win95/NT shortcut
MemoryInfo   gets information about system memory
MoveOnReboot   moves a file on system reboot
MoveWindow   moves/resizes a window
MsgBox   shows standard Windows message box
MsgBoxEx   shows custom message box
MultiDisplayInfo   gets infomation about the screens in the system
MultiDisplayList   gets list of the screens in the system
NextActiveWindow   returns the next window to become active
OpenFile   opens a file using it's associated program
OpenURL   opens a URL using the default browser
PageSetupDlg   shows page setup dialog box
PasteText  pastes text from the clipboard
PlaceCursor   positions the cursor
PMIconList  returns list of icons in a Program Manager or Start Menu group
PMGroupList  returns list of Program Manager or Start Menu groups
PMSubGroupList  returns list of Start Menu groups inside another group
Previous   checks whether a previous instance is running
PrinterInfo  returns information about the installed printer
PrintFile   prints a file using it's associated program
PrintDlg   shows printer dialog box
Prompt   shows prompt dialog box

Information functions   System functions  
File functions   Window functions  
Registration functions  

Contents  



Function list

A - D          E - F          G - P          R - S          T - X 

ReadIni   reads Windows ini file
ReadRegNumber   reads Registry number value
ReadRegString   reads Registry string value
ReadRegBinary   reads Registry binary value
ReadRegMulti   reads Registry multi string value
RecycleFile   places a file in the Win95/NT recycle bin.
RefreshDesktop  refreshes the desktop icons
RegKeyList   returns a list of sub-keys inside a registry key
RegValueList   returns a list of values inside a registry key
RemoveSysItems   removes System menu, min and max boxes
RenameFile   renames a file or folder
ResolveShortcut   returns the file a shortcut points to
RestrictCursor   restricts the cursor to a specific screen area
RunProgram   runs an external program
ScreenInfo   gets information (width, height, etc) of the screen
ScreenSaverTime   sets the screen saver time out
SendKeys   sends simulated key presses to the active window
SendMsg   sends a windows message to a window
SetCurrentDir   changes the DOS current directory
SetDisplay   sets the screen size and depth
SetDisplayEx   sets the screen size and depth
SetEnvironment   sets an environment variable
SetFileAttributes   sets the attributes of a file
SetFileDate   sets the date of a file
SetMultiDisplay   sets the screen size and depth
SetParent   makes a window a child of another window
SetPattern   sets the desktop pattern
SetPrinter  changes settings for the default printer
SetScreenSaver   sets the screen saver
SetSystemTime  sets the system time/date
SetVolume   sets the volume of wave and midi files and audio CD
SetWallpaper   sets the desktop wallpaper
SetWindowDepth   sets the z-order depth of a window
SetWindowState   minimises, maximises, hides a window
SetWindowTitle   set the caption of a window
Shell   executes a file
ShortFileName   returns the DOS version of a Win95 long file name
Sleep   pauses the calling Director/Authorware program
SoundCard   checks whether a sound card is installed
StageHandle   returns the Director stage window
SysFolder   returns location of system folders (windows, system, temp, etc)
SystemTime  returns the current system time/date



Information functions   System functions  
File functions   Window functions  
Registration functions  

Contents  



Function list

A - D          E - F          G - P          R - S          T - X

TempFileName   returns a temporary file name guaranteed not to exist
UserName   returns name of current user
Version   returns version info (Windows, NT, DOS, QuickTime, VFW)
WaitForWindow   waits until a specified window is in a specified state
WaitTillActive   waits until a specified window becomes the active one
WindowDepth   gets the z-order depth of a window
WindowExists   checks that a window handle is valid
WindowInfo   returns info (state, size, position, title, class) of a window
WindowList   returns a list of all windows with given title or class
WindowToBack   sends a    window to the back of other windows
WindowToFront   brings a window to the front of other windows
WinHandle   returns the main Director or Authorware presentation window
WinHelp   shows a Windows help file
WriteIni   writes an entry to a Windows ini file
WriteRegBinary   writes binary value to the Registry
WriteRegMulti   writes multi string value to the Registry
WriteRegNumber   writes number value to the Registry
WriteRegString   writes string value to the Registry
XCopy   copies multiple files with wildcard matching, including sub-

directories.
XCopyProgress   copies multiple files with wildcard matching, including sub-

directories.
XDelete   deletes files with wildcard matching, including sub-directories

Information functions   System functions  
File functions   Window functions  
Registration functions  

Contents  



Information functions

Version   returns version info (Windows, NT, DOS, QuickTime, VFW)
SysFolder   returns location of system folders (windows, system, temp, etc)
CpuInfo   gets information (type, speed) about the processor installed
DiskInfo   gets information (type, size, name, number) about a disk
DiskList   returns list of available drives
MemoryInfo   gets information about system memory
FindApp   finds the application associated with a file type
ReadIni   reads Windows ini file
WriteIni   writes an entry to a Windows ini file
FlushIni   forces Windows to write an ini file to disk.
DeleteIniEntry   deletes entry from an .ini file.
DeleteIniSection   deletes section from an .ini file.
ReadRegString   reads Registry string value
WriteRegString   writes string value to the Registry
ReadRegNumber   reads Registry number value
WriteRegNumber   writes number value to the Registry
ReadRegBinary   reads Registry binary value
WriteRegBinary   writes binary value to the Registry
ReadRegMulti   reads Registry multi string value
WriteRegMulti   writes multi string value to the Registry
DeleteReg   deletes Registry entry
RegKeyList   returns a list of sub-keys inside a registry key
RegValueList   returns a list of values inside a registry key
SoundCard   checks whether a sound card is installed
FontInstalled   checks whether a font is installed
FontList   returns a list of installed fonts
FontStyleList   returns a list of available styles for a truetype font
CommandArgs   returns the command line arguments the application was started 

with
Previous   checks whether a previous instance is running
ScreenInfo   gets information (width, height, etc) of the screen
MultiDisplayInfo   gets infomation about the screens in the system
MultiDisplayList   gets list of the screens in the system

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



Version
Description: baVersion returns a string containing version information.

Usage: Result = baVersion( VersionType )

Arguments: String.
VersionType is the type of version you are interested in.
Can be one of the following:

"os" the current operating system
"windows" windows version
"nt" version of Windows NT
"dos" DOS version
"build" the Windows build version
"service pack" the service pack installed
"nt type" the NT product type
"vfw" Video for Windows version
"qt" QuickTime 2 and earlier versions
"qt3" QuickTime 3 and later versions

Returns: String.
Returns the version information requested.
The return for "os" will be either "Win16", "Win95", "Win98", "WinME", 
"WinNT", "Win2000" or "WinXP".

Examples: Director:
WinVer = baVersion( "windows" )

Authorware:
WinVer := baVersion( "windows" )

Notes: The NT information is provided to enable programs to tell whether or not 
they are running under Windows NT. For example, baVersion( "windows" ) 
will return 4.0 for both Windows 95 and Windows NT 4.0 under 32 bit. If the 
program is running under NT, then baVersion( "nt" ) will also return 4.0, but 
will return 0 if running under Windows 95. 
This function also allows 16 bit programs to tell what version of NT they are 
running under. A 16 bit program running under NT will return 3.10 for 
baVersion( "windows" ), but baVersion( "nt" ) will return the correct NT 
version.

Here is a table of the possible baVersion return values:

Win 3.1 Win 95 Win
98

Win ME Win NT Win2000 WinXP

16 bit 
"windows"

3.0, 3.10 3.95 3.98 3.98 3.10 3.10 3.10

16 bit "nt" 0 0 0 0 3.1 - 4.0 5.0 5.1
16 bit "dos" 3.0 - 6.22 7.0 7.10 7.10 5.0 5.0 5.0
32 bit 
"windows"

-- 4.0 4.10 4.90 3.51, 4.0 5.0 5.1

32 bit "nt" -- 0 0 0 3.51, 4.0 5.0 5.1
32 bit "dos" -- 0 0 0 0 0 0

The "service pack" option is only available on NT, 2000 and XP.

The "nt type" option is only available on NT, 2000 and XP. It will return 



"server" or "workstation" on NT, "server" or "professional" on 2000, and 
"server", "professional" or "personal" on XP.

Apple made considerable changes to QuickTime between versions 2 and 3, 
and both may co-exist on the same system. "qt" will report the version of 
QuickTime prior to version 3. The version of QuickTime returned will match 
the Xtra/UCD version used - the 16 bit Xtra/UCD will return the version of 16
bit QuickTime; the 32 bit will return the version of 32 bit QuickTime. "qt3" 
returns the version of QuickTime 3 or later. "qt3" is only available in 32 bit.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



CpuInfo
Description: baCpuInfo returns information about the processor installed.

Usage: Result = baCpuInfo( InfoType )

Arguments: String.
InfoType is the type of information to get. Can be:

"vendor" the processor manufacturer
"type" returns the type of processor
"model" the model of the processor
"stepping" the stepping revision number
"speed" the speed of the processor in mHz

Returns: Integer or string depending on the InfoType.
See the Notes section for details on interpreting the return.

Examples: Director:
Cpu = baCpuInfo( "type" )

Authorware:
Cpu := baCpuInfo( "type" )

Notes: The "vendor" option returns a string containing the name of the 
manufacturer of the processor. This will be a 12 character string, the most 
common returns will be "GenuineIntel", "AuthenticAMD" and "CryixInstead" 
but there will be others for chips from IBM, Compaq, DEC and others.

This function contains identification code from Intel and AMD and is only 
reliable with those processors. Other brands will report that they are 
equivalent to an Intel processor, but that will not necessarily be a valid 
comparison.

To determine the actual processor model, you need to interpret both the 
"type" and "model" options. The "type" option will identify a general family 
of processor eg: 486, Pentium or K6. The "model" option will give specific 
information about the model within a particular family. "stepping" is the 
revision number of a specific model, and will not generally be useful. Refer 
to the following table to determine a processor.

Intel CPUs
Description Type Model
486 DX 4 0, 1
486 SX 4 2
486 DX2 4 3, 7
486 SL 4 4
486 SX2 4 5
486 DX4 4 8
Pentium 5 1, 2
Pentium Overdrive 5 3
Pentium MMX 5 4
Pentium Pro 6 1
Pentium II (r1) 6 3
Pentium II (r2) 6 5
Celeron (r1) 6 5
Celeron (r2) 6 6, 8



Pentium III 6 7, 8, 11
Pentium III Xeon 6 8, 10
Pentium IV 15 0

Note that the first release of the Celeron has the same numbers as the 
second Pentium II release.

AMD CPUs
Description Type Model
AMD K5 5 <6
AMD K6 5 6, 7
AMD K6-II 5 8
AMD K6-III 5 9
AMD K7 Athlon 6

The "speed" returned is only an approximation within a variation of about 
10%. If the processor has been overclocked, the speed it is running at will 
be returned. Intel specifically warn against quoting this number to users, 
because it can not be guaranteed to be accurate. Use this number as a 
guide only.

In the 16 bit Xtra, only Intel processors are supported.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SysFolder
Description: baSysFolder gets the location of a special Windows directory.

Usage: Result = baSysFolder( Folder )

Arguments: string.
Folder is the name of the folder to return. Can be one of the following:

"windows" returns the Windows folder
"system" the System folder
"system16" the System folder for 16 bit files
"system32" the System folder for 32 bit files
"temp" the folder used for temporary files
"current" the current DOS directory

These additional folders are available in 32 bit.
"desktop" the desktop folder
"common desktop" the common desktop folder for all users
"groups" the program groups folder in the start menu
"common groups" the common program groups folder for all users
"start menu" the start menu folder
"common start menu" the common start menu for all users
"personal" the users personal documents folder
"favorites" the users    favorites folder
"startup" the 'Start Up' program group folder
"common startup" the ‘Start Up’ folder for all users
"recent" the 'Recent documents' folder
"sendto" the 'Send To' folder
"network" the 'Network Neighborhood' folder
"fonts" the 'Fonts' folder
"shellnew" the new documents template folder
"program files" the program files folder
"common files" the common folder in the program files folder

Returns: String. 
Returns the requested folder.

Examples: Director:
WinDir = baSysFolder( "windows" ) 

Authorware:
WinDir := baSysFolder( "windows" ) 

Notes: The string that is returned will have a "\" at the end.
The "system16" and "system32" options are for use with Windows NT. On 
other versions of windows, they will return the same as "system".    These 
options allow a 16 bit exe to get the windows\system32 folder; and a 32 bit 
exe to get the windows\system folder.

As well as the above folders, you can also pass in the number of a special 
folder. These numbers are listed in the ShlObj.h header file in the Windows 
Platform SDK. For example, to get the Cookies folder, you can use 
baSysFolder( "33" ). If you pass in a number, it will be passed directly to the
SHGetSpecialFolderLocation API call.



Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FindApp
Description: baFindApp returns the application associated with a file type.

Usage: Result = baFindApp( Extension )

Arguments: String.
Extension is the extension of the file type.

Returns: String.
Returns the full path name to the application. Returns an empty string if the
extension is not associated with or a program, or the associated program 
does not exist.

Examples: Director:
Notepad = baFindApp( "txt" )

Authorware:
Notepad := baFindApp( "txt" )

Notes: In 32 bit Windows, Microsoft guidelines state that if a program registers a 
file extension, and the path to the executable file is a long file name, then 
that name must be included in quotes. If an installation program doesn't 
follow these guidelines, then this function may fail. Specifically, if the path 
name to the executable contains a space, then this function will not be able
to return the path to the executable. Adobe Acrobat Reader 3 is one 
program that does not register itself correctly - it does not place quotes 
around the executable name in the registry. The baFindApp function has 
been written around this particular problem with Acrobat, and will use other
methods to locate Acrobat if it is asked to find the application associated 
with "pdf" files.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



ReadIni
Description: baReadIni gets a string from a Windows ini file.

Usage: Result = baReadIni( Section, Keyname, Default, IniFile )

Arguments: String, string, string, string.
Section is the section name of the ini file.
Keyname is the name of the key
Default is the string that is returned if the file, section or key doesn't exist.
IniFile is the name if the ini file to use.

Returns: String.
Returns the value associated with the Keyname. If the IniFile, Section or 
Keyname doesn't exist, then the return will be the Default string.

Examples: Director:
Name = baReadIni( "CurrentUser", "UserName", "Error", "Userdat.ini" )

Authorware:
Name := baReadIni( "CurrentUser", "UserName", "Error", "Userdat.ini" )

Notes: An entry in a Windows ini file has the following format :

[Section] 
Keyname=string

This function will return the string after the equals sign. When using this 
function, the Section name you use should not include the square brackets 
around the name. The Keyname should not include the equals sign. For 
example the ini file for the example above might look something like this

[CurrentUser]
UserName=Gary Smith
Password=mypw
ModulesCompleted=4

The IniFile can be in any directory. If the IniFile is not in the Windows 
directory, then the full path name to the file must be supplied. The ini file 
does not have to have an .ini extension: any extension can be used.
This function returns a maximum of 32000 characters.

See also: baWriteIni
baFlushIni
baDeleteIniEntry
baDeleteIniSection

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  



Contents  



WriteIni
Description: baWriteIni writes a string into a Windows ini file.

Usage: Result = baWriteIni( Section, Keyname, NewValue, IniFile )

Arguments: String, string, string, string.
Section is the section name of the ini file.
Keyname is the name of the key
NewValue is the string to write into the file.
IniFile is the name if the ini file to use.

Returns: Integer.
Returns 1 if the function was successful, else 0.

Examples: Director:
OK = baWriteIni( "CurrentUser", "UserName", "Gary Smith", "Userdat.ini" )

Authorware:
OK := baWriteIni( "CurrentUser", "UserName", "Gary Smith", "Userdat.ini" )

Notes: An entry in a Windows ini file has the following format :

[Section] 
Keyname=string

This function will write the string after the equals sign. When using this 
function, the Section name you use should not include the square brackets 
around the name. The Keyname should not include the equals sign. For 
example the ini file for the example above might look something like this

[CurrentUser]
UserName=Gary Smith
Password=mypw
ModulesCompleted=4

The IniFile can be in any directory. If the IniFile is not in the Windows 
directory, then the full path name to the file must be supplied. The ini file 
does not have to have an .ini extension: any extension can be used. If the 
ini file does not exist, then it will be created.

On Win95, strings written to an ini file can not contain a tab character.

See also: baReadIni
baFlushIni
baDeleteIniEntry
baDeleteIniSection

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  



Contents  



FlushIni
Description: baFlushIni forces Windows to write an ini file to disk.

Usage: baFlushIni( Filename )

Arguments: String.
Filename is the name of the ini file to flush.

Returns: Void.

Examples: Director:
baFlushIni( the moviePath & "data.ini" )

Authorware:
baFlushIni( FileLocation ^ "data.ini" )

Notes: This function is for use with the other ini file functions. When Windows 
writes an ini file it keeps it cached for a short time. This does not cause 
problems when using only the ini functions. However, if you want to write 
an ini file, then immediately do something else with it, say, encrypt it, then 
you should use this function to force Windows to write the file to disk before
you use it.

eg.
baWriteIni( "data", "password", pw, iniFile ) -- write ini file
baFlushIni( iniFile ) -- force it to disk
baEncryptFile( iniFile, key ) -- encrypt it

This function is not needed if you are only using baWriteIni and baReadIni 
on your ini files.

See also: baReadIni
baWriteIni
baDeleteIniEntry
baDeleteIniSection

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DeleteIniEntry
Description: baDeleteIniEntry deletes an entry from an ini file.

Usage: baDeleteIniEntry( Section, Keyname, Filename )

Arguments: String, string, string.
Section is the name of the section the entry is in
Keyname is the entry to delete
Filename is the name of the ini file

Returns: Void.

Examples: Director:
baDeleteIniEntry( "Users", "Name", the moviePath & "data.ini" )

Authorware:
baDeleteIniEntry( "Users", "Name", FileLocation ^ "data.ini" )

See also: baReadIni
baWriteIni
baDeleteIniSection

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DeleteIniSection
Description: baDeleteIniSection deletes a section from an ini file.

Usage: baDeleteIniSection( Section, Filename )

Arguments: String, string.
Section is the name of the section the entry is in
Filename is the name of the ini file

Returns: Void.

Examples: Director:
baDeleteIniSection( "Users", the moviePath & "data.ini" )

Authorware:
baDeleteIniSection( "Users",    FileLocation ^ "data.ini" )

See also: baReadIni
baWriteIni
baDeleteIniEntry

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



ReadRegString
Description: baReadRegString gets a string from the Windows Registry.

Usage: Result = baReadRegString( KeyName, ValueName, Default, Branch )

Arguments: String, string, string, string.
KeyName is the name of the key.
ValueName is the name of the value. Under 16 bit, this value is ignored.
Default is the string that is returned if the key/value doesn't exist.
Branch is the branch of the registry to use. Can be one of the following:

"HKEY_CLASSES_ROOT"
"HKEY_CURRENT_USER"
"HKEY_LOCAL_MACHINE"
"HKEY_USERS"
"HKEY_CURRENT_USER"
"HKEY_DYN_DATA"

Under 16 bit, only the HKEY_CLASSES_ROOT branch is accessible - the 
Branch setting is ignored.

Returns: String.
Returns the value associated with the Keyname. If the Keyname doesn't 
exist, then the return will be the Default string.

Examples: Director:
Name = baReadRegString( "Courses\Computers\101", "CurrentUser", 
"Error", "HKEY_CLASSES_ROOT" )

Authorware:
Name := baReadRegString( "Courses\\Computers\\101", "CurrentUser", 
"Error", "HKEY_CLASSES_ROOT" )

Notes: A Registry entry consists of keys and sub-keys, similar to the directories and
sub-directories in the Windows file system. 32 bit Windows adds Values to 
the registry. These can be thought of as files within the key. These Values 
are not available under 16 bit - the ValueName argument is ignored.

To get the (Default) value of a key in 32 bit use an empty string for the 
ValueName argument.

In 16 bit, this function can only obtain values from keys located in the 
HKEY_CLASSES_ROOT branch of the Registry. 

Under Windows 3.1, the KeyName can not contain any spaces.

This function returns a maximum of 2000 characters.

See also: baWriteRegString
baReadRegNumber
baWriteRegNumber
baReadRegBinary
baWriteRegBinary
baReadRegMulti
baWriteRegMulti
baDeleteReg



baRegKeyList
baRegValueList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



WriteRegString
Description: baWriteRegString writes a string into the Windows Registry.

Usage: Result = baWriteRegString( KeyName, ValueName, Data, Branch )

Arguments: String, string, string, string
KeyName is the name of the key.
ValueName is the name of the value. In 16 bit this value is ignored.
Data is the string to write into the registry.
Branch is the branch of the registry to use. Can be one of the following:

"HKEY_CLASSES_ROOT"
"HKEY_CURRENT_USER"
"HKEY_LOCAL_MACHINE"
"HKEY_USERS"
"HKEY_CURRENT_USER"
"HKEY_DYN_DATA"

Under 16 bit Windows, only the HKEY_CLASSES_ROOT branch is accessible -
the Branch setting is ignored.

Returns: Integer.
Returns 1 if the function is successful, otherwise 0.

Examples: Director:
OK = baWriteRegString( "Courses\Computers\101", "CurrentUser", "Gary 
Smith" , "HKEY_CLASSES_ROOT" )

Authorware:
OK := baWriteRegString( "Courses\\Computers\\101", "CurrentUser", "Gary 
Smith" , "HKEY_CLASSES_ROOT" )

Notes: A Registry entry consists of keys and sub-keys, similar to the directories and
sub-directories in the Windows file system. 32 bit Windows adds Values to 
the registry. These can be thought of as files within the key. These Values 
are not available under 16 bit - the ValueName argument is ignored.

To set the (Default) value of a key in 32 bit use an empty string for the 
ValueName argument.

Also in 16 bit, this function can only obtain values from keys located in the 
HKEY_CLASSES_ROOT branch of the Registry. 

Under Windows 3.1, the KeyName can not contain any spaces.

See also: baReadRegString
baReadRegNumber
baWriteRegNumber
baReadRegBinary
baWriteRegBinary
baReadRegMulti
baWriteRegMulti
baDeleteReg
baRegKeyList
baRegValueList



Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



ReadRegNumber
Description: baReadRegNumber gets a number from the Windows Registry.

Usage: Result = baReadRegNumber( KeyName, ValueName, Default, Branch )

Arguments: String, string, integer, string.
KeyName is the name of the key.
ValueName is the name of the value.
Default is the string that is returned if the key/value doesn't exist.
Branch is the branch of the registry to use. Can be one of the following:

"HKEY_CLASSES_ROOT"
"HKEY_CURRENT_USER"
"HKEY_LOCAL_MACHINE"
"HKEY_USERS"
"HKEY_CURRENT_USER"
"HKEY_DYN_DATA"

Returns: Integer.
Returns the value associated with the Keyname. If the Keyname doesn't 
exist, then the return will be the Default value.

Examples: Director:
Name = baReadRegNumber( "Courses\Computers", "Course", 0, 
"HKEY_CLASSES_ROOT" )

Authorware:
Name := baReadRegNumber( "Courses\\Computers", "Course", 0, 
"HKEY_CLASSES_ROOT" )

Notes: This function does not work in 16 bit - the 16 bit registry can not contain 
numbers. If used in 16 bit, the Default value will always be returned.

A Registry entry consists of keys and sub-keys, similar to the directories and
sub-directories in the Windows file system. 32 bit Windows adds Values to 
the registry. These can be thought of as files within the key. 

See also: baReadRegString
baWriteRegString
baWriteRegNumber
baReadRegBinary
baWriteRegBinary
baReadRegMulti
baWriteRegMulti
baDeleteReg
baRegKeyList
baRegValueList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  



Contents  



WriteRegNumber
Description: baWriteRegNumber writes a number into the Windows Registry.

Usage: Result = baWriteRegNumber( KeyName, ValueName, NewData, Branch )

Arguments: String, string, integer, string.
KeyName is the name of the key.
ValueName is the name of the value.
NewData is the number that will be written to the registry.
Branch is the branch of the registry to use. Can be one of the following:

"HKEY_CLASSES_ROOT"
"HKEY_CURRENT_USER"
"HKEY_LOCAL_MACHINE"
"HKEY_USERS"
"HKEY_CURRENT_USER"
"HKEY_DYN_DATA"

 
Returns: Integer.

Returns 1 if the function is successful, otherwise 0.

Examples: Director:
OK = baWriteRegNumber( "Courses\Computers", "Course", 101 , 
"HKEY_CLASSES_ROOT" )

Authorware:
OK := baWriteRegNumber( "Courses\\Computers", "Course", 101 , 
"HKEY_CLASSES_ROOT" )

Notes: This function does not work in 16 bit - the 16 bit registry can not contain 
numbers. If used in 16 bit, the function does nothing.

A Registry entry consists of keys and sub-keys, similar to the directories and
sub-directories in the Windows file system. 32 bit Windows adds Values to 
the registry. These can be thought of as files within the key. 

See also: baReadRegString
baWriteRegString
baReadRegNumber
baReadRegBinary
baWriteRegBinary
baReadRegMulti
baWriteRegMulti
baDeleteReg
baRegKeyList
baRegValueList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  



Contents  



ReadRegBinary
Description: baReadRegBinary gets a binary value from the Windows Registry.

Usage: Result = baReadRegBinary( KeyName, ValueName, Default, Branch )

Arguments: String, string, string, string.
KeyName is the name of the key.
ValueName is the name of the value.
Default is the string that is returned if the key/value doesn't exist.
Branch is the branch of the registry to use. Can be one of the following:

"HKEY_CLASSES_ROOT"
"HKEY_CURRENT_USER"
"HKEY_LOCAL_MACHINE"
"HKEY_USERS"
"HKEY_CURRENT_USER"
"HKEY_DYN_DATA"

Returns: List (Xtra) or string (UCD).
Returns a list containing the binary value stored in Keyname. If the 
Keyname doesn't exist, then the return will be a list containing just the 
Default value.

Examples: Director:
data = baReadRegBinary( "Courses\Computers", "Data", "error, 
"HKEY_CLASSES_ROOT" )

Authorware:
data := baReadRegBinary( "Courses\\Computers", "Data", "error", 
"HKEY_CLASSES_ROOT" )

Notes: In the Xtra, the return will be a list containing the binary values. eg:

[ 23, 45, 68, 0, 3, 5, 0 ]

In the UCD, the return will be a string with each value on a separate line. 
eg:

"23\r45\r68\r0\r3\r5\r0"

Use the Authorware GetLine function to retrieve the values.

Note that these values will not be the same values as shown in RegEdit - 
the values in RegEdit are in hex, while the Xtra returns the decimal 
equivalents. If the key does not exist, then a list with the default value (as a
string) as its only entry will be returned, eg:

["error"]

A Registry entry consists of keys and sub-keys, similar to the directories and
sub-directories in the Windows file system. 32 bit Windows adds Values to 
the registry. These can be thought of as files within the key. 

See also: baWriteRegBinary
baReadRegString



baWriteRegString
baReadRegNumber
baWriteRegNumber
baReadRegMulti
baWriteRegMulti
baDeleteReg
baRegKeyList
baRegValueList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



WriteRegBinary
Description: baWriteRegBinary writes a binary value into the Windows Registry.

Usage: Result = baWriteRegBinary( KeyName, ValueName, Data, Branch )

Arguments: String, string, list (Xtra) or string (UCD), string.
KeyName is the name of the key.
ValueName is the name of the value.
Data is a list containing the numbers that will be written to the registry.
Branch is the branch of the registry to use. Can be one of the following:

"HKEY_CLASSES_ROOT"
"HKEY_CURRENT_USER"
"HKEY_LOCAL_MACHINE"
"HKEY_USERS"
"HKEY_CURRENT_USER"
"HKEY_DYN_DATA"

 
Returns: Integer.

Returns 1 if the function is successful, otherwise 0.

Examples: Director:
OK = baWriteRegBinary( "Courses\Computers", "Course", [10, 23, 0, 0, 45, 
13], "HKEY_CLASSES_ROOT" )

Authorware Xtra:
OK := baWriteRegBinary( "Courses\\Computers", "Course", [10, 23, 0, 0, 45,
13], "HKEY_CLASSES_ROOT" )

Authorware UCD:
OK := baWriteRegBinary( "Courses\\Computers", "Course", "10\r23\r0\r0\
r45\r13", "HKEY_CLASSES_ROOT" )

Notes: This function does not work in 16 bit - the 16 bit registry can not contain 
numbers. If used in 16 bit, the function does nothing.

In the UCD, place each value on a separate line.

The values used must be decimal numbers, not hex as is used in RegEdit.

See also: baReadRegBinary
baReadRegString
baWriteRegString
baReadRegNumber
baWriteRegNumber
baReadRegMulti
baWriteRegMulti
baDeleteReg
baRegKeyList
baRegValueList



Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



ReadRegMulti
Description: baReadRegMulti gets a multi string value from the Windows Registry.

Usage: Result = baReadRegBinary( KeyName, ValueName, Default, Branch )

Arguments: String, string, string, string.
KeyName is the name of the key.
ValueName is the name of the value.
Default is the string that is returned if the key/value doesn't exist.
Branch is the branch of the registry to use. Can be one of the following:

"HKEY_CLASSES_ROOT"
"HKEY_CURRENT_USER"
"HKEY_LOCAL_MACHINE"
"HKEY_USERS"
"HKEY_CURRENT_USER"
"HKEY_DYN_DATA"

Returns: List (Xtra) or string (UCD).
Returns a list containing the strings stored in Keyname. If the Keyname 
doesn't exist, then the return will be a list containing just the Default value.

Examples: Director:
data = baReadRegMulti( "Courses\Computers", "Data", "error, 
"HKEY_CLASSES_ROOT" )

Authorware:
data := baReadRegMulti( "Courses\\Computers", "Data", "error", 
"HKEY_CLASSES_ROOT" )

Notes: This function does not work in 16 bit - the 16 bit registry can not contain 
numbers. If used in 16 bit, the Default value will always be returned.

The multi string type of registry entry consists of a series of strings.

in the Xtra the return will a list containing the string values. eg:

[ "date", "20011121, "time", "231823" ]

In the UCD, the return will be a string with each value on a separate line. 
eg:

"date\r20011121\rtime\r231823"

Use the Authorware GetLine function to retrieve the values.

If the key does not exist, then a list with the default value (as a string) as its
only entry will be returned, eg:

["error"]

A Registry entry consists of keys and sub-keys, similar to the directories and
sub-directories in the Windows file system. 32 bit Windows adds Values to 
the registry. These can be thought of as files within the key. 



See also: baWriteRegMulti
baWriteRegBinary
baReadRegString
baWriteRegString
baReadRegNumber
baWriteRegNumber
baReadRegMulti
baWriteRegMulti
baDeleteReg
baRegKeyList
baRegValueList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



WriteRegMulti
Description: baWriteRegMulti writes a multi string value into the Windows Registry.

Usage: Result = baWriteRegBinary( KeyName, ValueName, Data, Branch )

Arguments: String, string, list (Xtra) or string (UCD), string.
KeyName is the name of the key.
ValueName is the name of the value.
Data is a list containing the strings that will be written to the registry.
Branch is the branch of the registry to use. Can be one of the following:

"HKEY_CLASSES_ROOT"
"HKEY_CURRENT_USER"
"HKEY_LOCAL_MACHINE"
"HKEY_USERS"
"HKEY_CURRENT_USER"
"HKEY_DYN_DATA"

 
Returns: Integer.

Returns 1 if the function is successful, otherwise 0.

Examples: Director:
OK = baWriteRegMulti( "Courses\Computers", "Course", [ "name", "fred" ], 
"HKEY_CLASSES_ROOT" )

Authorware Xtra:
OK := baWriteRegBinary( "Courses\\Computers", "Course", [ "name", 
"fred" ], "HKEY_CLASSES_ROOT" )

Authorware UCD:
OK := baWriteRegBinary( "Courses\\Computers", "Course", "name\rfred" , 
"HKEY_CLASSES_ROOT" )

Notes: This function does not work in 16 bit - the 16 bit registry can not contain 
numbers. If used in 16 bit, the function does nothing.

In the UCD, place each value on a separate line.

See also: baReadRegMulti
baReadRegBinary
baReadRegString
baWriteRegString
baReadRegNumber
baWriteRegNumber
baReadRegMulti
baWriteRegMulti
baDeleteReg
baRegKeyList
baRegValueList

Information functions   System functions  
File functions   Window functions  



Alphabetical function list  

Contents  



DeleteReg
Description: baDeleteReg deletes a key or value from the Windows Registry.

Usage: Result = baDeleteReg( KeyName, ValueName, Branch )

Arguments: String, string, string.
KeyName is the name of the key.
ValueName is the name of the value. A empty string will delete the entire 
KeyName.
 Branch is the branch of the registry to use. Can be one of the following:

"HKEY_CLASSES_ROOT"
"HKEY_CURRENT_USER"
"HKEY_LOCAL_MACHINE"
"HKEY_USERS"
"HKEY_CURRENT_USER"
"HKEY_DYN_DATA"

Returns: Integer.
Returns 1 if the function is successful, otherwise 0.

Examples: Director:
OK = baDeleteReg( "Courses\Computers", "Course", 
"HKEY_CLASSES_ROOT" )

Authorware:
OK := baDeleteReg( "Courses\\Computers", "Course", 
HKEY_CLASSES_ROOT" )

Notes: In 16 bit, the ValueName and Branch parameters are ignored - the    16 bit 
registry can not have values or branches.
Under Windows NT, a Key can only be deleted if it is empty. Under Windows 
95 or 3.1, all sub keys will also be deleted.

See also: baReadRegString
baWriteRegString
baReadRegNumber
baReadRegNumber
baReadRegBinary
baWriteRegBinary
baRegKeyList
baRegValueList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



RegKeyList
Description: baRegKeyList returns a list of sub-keys inside a registry key.

Usage: Result = baRegKeyList( KeyName, Branch )

Arguments: String, string.
KeyName is the name of the key.
Branch is the branch of the registry to use. Can be one of the following:

"HKEY_CLASSES_ROOT"
"HKEY_CURRENT_USER"
"HKEY_LOCAL_MACHINE"
"HKEY_USERS"
"HKEY_CURRENT_USER"
"HKEY_DYN_DATA"

Returns: List (Xtra) or String (UCD).
Returns a list of the keys, or an empty list/string if the key doesn't exist or is
empty.

Examples: Director:
keyList = baRegKeyList( "Software\Adobe", "HKEY_LOCAL_MACHINE" )

Authorware:
keyList := baRegKeyList( "Software\\Adobe", "HKEY_LOCAL_MACHINE" )

Notes: The 16 bit version can only read from the HKEY_CLASSES_ROOT branch.

See also: baReadRegString
baWriteRegString
baReadRegNumber
baReadRegNumber
baReadRegBinary
baWriteRegBinary
baDeleteReg
baRegValueList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



RegValueList
Description: baRegValueList returns a list of values inside a registry key.

Usage: Result = baRegValueList( KeyName, Branch )

Arguments: String, string.
KeyName is the name of the key.
Branch is the branch of the registry to use. Can be one of the following:

"HKEY_CLASSES_ROOT"
"HKEY_CURRENT_USER"
"HKEY_LOCAL_MACHINE"
"HKEY_USERS"
"HKEY_CURRENT_USER"
"HKEY_DYN_DATA"

Returns: List (Xtra) or String (UCD).
Returns a list of the keys, or an empty list/string if the key doesn't exist or is
empty.

Examples: Director:
valueList = baRegValueList( "Netscape\Netscape Navigator", 
"HKEY_LOCAL_MACHINE" )

Authorware:
valueList := baRegValueList( "Software\\Adobe", "HKEY_LOCAL_MACHINE" )

Notes: This function is not available in the 16 bit version - the 16 bit registry can 
not contain values.

See also: baReadRegString
baWriteRegString
baReadRegNumber
baReadRegNumber
baReadRegBinary
baWriteRegBinary
baDeleteReg
baRegKeyList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



Previous

Description: baPrevious checks whether a previous instance of a projector or packaged 
file is running.

Usage: Result = baPrevious( Activate )

Arguments: Integer.
If Activate is true, the previous instance is activated and brought to the 
front.

Returns: Integer. 
Returns the window handle of the previous instance if one is running, else 
0.

Examples: Director:
if baPrevious( true ) <> 0 then quit

Authorware:
if baPrevious( true ) <> 0 then quit(0)

Notes: Both Director and Authorware open their display windows before scripts are
executed. This means that the window of the second instance will appear 
before the previous one can be activated.

Under Windows NT, this function will only find the first instance opened. For
example, if you open three copies of a projector, then quit the first one, 
baPrevious in the third projector will return 0 - it can not recognise the 
second projector as a previous instance. Under Windows 95 and 3.1, the 
third projector will be able to identify the second projector as a previous 
instance.

If you are running a full screen Director projector use this script to activate 
the previous instance. The example given above will make the stage move 
to a new position.

wnd = baPrevious( false )
if wnd <> 0 then

baWindowToFront( wnd )
quit

end if

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SoundCard

Description: baSoundCard checks whether a sound card is installed.

Usage: Result = baSoundCard()

Arguments: Void.

Returns: Integer. 
Returns 1 if a sound card is installed, else 0.

Examples: Director:
Sound = baSoundCard( )

Authorware:
Sound := baSoundCard( )

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FontInstalled
Description: baFontInstalled reports whether or not a TrueType or Bitmap font is 

installed.

Usage: Result = baFontInstalled( FontName, Style )

Arguments: String, string.
FontName is the name of the font family eg "Arial".
Style is the specific style eg "Bold". Use an empty string ("") to see if the 
basic font is installed. The style is ignored if FontName is a Bitmap font.

Returns: Integer.
Returns 1 if the font is presently installed, otherwise 0.

Examples: Director:
FontOK = baFontInstalled( "Arial", "Bold Italic" )

Authorware:
FontOK := baFontInstalled( "Arial", "Bold Italic" )

Notes: If you ask for a specific font style, then the function will only return true if 
that style is present. For example, if you ask for "Arial", "Bold" and only the 
normal Arial is installed, this function will return 0. Some fonts may have 
different names for the styles, eg "Black" for bold and "Oblique" for italic. 
You must use the names built into the font.

See also: baFontStyleList
baFontList
baInstallFont

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FontList
Description: baFontList returns a list of all installed fonts.

Usage: Result = baFontList( FontType )

Arguments: String.
FontType is the type of fonts to list. Can be:

"All" all fonts
"TrueType" only true type fonts
"Bitmap" only bitmap fonts
"Device" only device or printer fonts
"Vector" only vector fonts

Returns: List (Xtra) or String (UCD)
Returns the list of fonts found.

Examples: Director:
ttList = baFontList( "TrueType" )

Authorware:
fontList := baFontList( "All" )

Notes: Postscript fonts handled by ATM are listed as device fonts. 
The UCD version returns a string with each font on a separate line.

See also: baFontStyleList
baFontInstalled
baInstallFont

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FontStyleList
Description: baFontStyleList returns a list of available styles for a truetype font.

Usage: Result = baFontStyleList( FontName )

Arguments: String.
 FontName is the name of the font.

Returns: List (Xtra) or String (UCD)
Returns the list of font styles found.

Examples: Director:
styleList = baFontStyleList( "Arial" )

Authorware:
styleList := baFontStyleList( "Arial" )

Notes: This function is only applicable to truetype fonts - other types of fonts will 
return an empty list or string. Only styles that are actually installed will be 
returned. Styles created on-the-fly by Windows will not.
The UCD version returns a string with each font on a separate line.

See also: baFontList
baFontInstalled
baInstallFont

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



CommandArgs
Description: baCommandArgs returns the arguments the application was started with.

Usage: Result = baCommandArgs( )

Arguments: Void.

Returns: String.
Returns the command line arguments, or an empty string if there were 
none.

Examples: Director:
Args = baCommandArgs( )

Authorware:
Args := baCommandArgs( )

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DiskInfo

Description: baDiskInfo returns the information about a disk.

Usage: Result = baDiskInfo( Drive, InfoType )

Arguments: String, string
Drive is the letter of the drive to get the information of.
InfoType is the type of information to get. Can be:

"type" returns the type of drive
"name" returns the volume name
"size" returns the size of the disk in Kb
"free" returns the amount of free space in Kb
"number" returns the serial number of the disk

Returns: Depends on InfoType. 
"type" string

The type of drive. Can be:
"Hard" Fixed hard drive.
"Floppy" Floppy disk drive.
"CD-ROM" CD-ROM drive.
"Network" Network drive.
"Removable" Removable drive eg Zip, Syquest.
"RAM" RAM drive. 
"Invalid" Drive doesn't exist, or is of unknown type.

"name" string
The name of the disk or an empty string if the disk doesn't exist.

"size" integer
The size of the disk in Kb, or 0 if the disk doesn't exist.

"free" integer
The amount of free space on the disk in Kb, or 0 if the disk doesn't exist.

"number" integer
The serial number of the disk, or 0 if the disk doesn't exist.

Examples: Director:
Size = baDiskInfo( "a" , "size" )
Label = baDiskInfo( "k" , "name" )

Authorware:
Size := baDiskInfo( "c" , "size" )
Label := baDiskInfo( "k" , "name" )

Notes: The original Windows API DriveType function reported that a CD-ROM drive 
was a remote (network) drive when used under Windows 3.1. This function 
has been altered to report correctly.
The 32 bit version reports Floppy drives as Removable.
The 16 bit Xtra/UCD will give inaccurate results on drives greater than 2gb. 
The 32 bit Xtra/U32 will report the correct size and free space when used on
FAT32 or NTFS drives greater than 2gb.

See also: baFindDrive
baDiskList



Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DiskList

Description: baDiskList returns a list of available drives.

Usage: Result = baDiskList( )

Arguments: None

Returns: List (Xtra) or string (UCD). 
Returns list of available drives.

Examples: Director:
disks = baDiskList( )

Authorware:
disks := baDiskList( )

Notes: This function will include removable drives such as CD-Roms drives even if 
there is not a disk in the drive.

In the UCD version, the return will be a string with each drive on a separate 
line. Use the Authorware GetLine function to retrieve each value.

See also: baFindDrive

baDiskInfo

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



MemoryInfo

Description: baMemoryInfo returns information about system memory.

Usage: Result = baMemoryInfo( InfoType )

Arguments: String.
InfoType is the type of information to get. Can be:

"ram" the amount of physical ram installed
"free ram" the amount of physical ram not being used
"swap" the size of the current swap file
"free swap" the amount of the swap file not being used

Returns: Integer.
Returns the information in bytes. 

Examples: Director:
ram = baMemoryInfo( "ram" )

Authorware:
free := baMemoryInfo( "free ram" )

Notes: The "free swap" option is not available in the 16 bit version.
The "swap" option in the 16 bit version when running under Windows 95 will
return the smaller of the physical ram or the swap file size.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



ScreenInfo
Description: baScreenInfo returns information about the screen.

Usage: Result = baScreenInfo( InfoType )

Arguments: String.
The type of information to get. Can be:

"height" the height of the screen in pixels
"width" the width of the screen in pixels
"depth" the colour depth of the screen in bits
"fontheight" the height of the system font in pixels
"titlebar height" the height of the system title bars
"menubar height" the height of system menus
"refresh" the current refresh frequency of the display adaptor

Returns: Integer.

Examples: Director:
ScrHgt = baScreenInfo( "height" )

Authorware:
ScrHgt := baScreenInfo( "height" )

Notes: The values that are returned will be accurate even if the screen size is 
changed while the projector or packaged file is running.

The refresh option is only available under NT, 2000 and XP.

See also: baSetDisplay
baSetDisplayEx

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



MultiDisplayInfo
Description: baMultiDisplayInfo returns information about the screens.

Usage: Result = baMultiDisplayInfo( Monitor, InfoType )

Arguments: String, string.
Monitor is the monitor to get the information of; eg "\\.\DISPLAY1". You can 
also use "primary" to get the primary display, or "secondary" to get the 
secondary display.
InfoType is the type of information to get. Can be:

"height" the height of the screen in pixels
"width" the width of the screen in pixels
"depth" the colour depth of the screen in bits
"refresh" the current refresh frequency of the display adaptor
"xpos", "ypos" the x and y position of the monitor in relation to 

the primary monitor
"number" the number of monitors in the system. The Monitor is 

ignored
"primary" the name of the primary display. The Monitor is ignored
"secondary" the name of the secondary display. The Monitor is ignored
"card" the name of the card powering the monitor.

Returns: String.
Returns the information requested, or an empty string if unsuccessful.

Examples: Director:
ScrHgt = baMultiDisplayInfo( "primary", "height" )

Authorware:
monitors := baMultiDisplayInfo( "", "number" )

See also: baSetMultiDisplay
baMultiDisplayList
baSetDisplay
baSetDisplayEx

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



MultiDisplayList
Description: baMultiDisplayList returns a list of all displays.

Usage: Result = baMultiDisplayList( )

Arguments: Void.

Returns: List.
Returns a list of all the connected displays. eg: 
["\\.\DISPLAY1", "\\.\DISPLAY2"]

Examples: Director:
monitors = baMultiDisplayList( )

Authorware:
monitors := baMultiDisplayList( )

See also: baSetMultiDisplay
baMultiDisplayInfo
baSetDisplay
baSetDisplayEx

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



System functions

DisableDiskErrors   disables the 'Drive not ready' error message
DisableKeys   disables/enables key presses
DisableMouse   disables/enables mouse clicks
DisableSwitching   disables/enables task switching
DisableScreenSaver   disables/enables the screen saver
ScreenSaverTime   sets the screen saver time out
SetScreenSaver   sets the screen saver
SetWallpaper   sets the desktop wallpaper
SetPattern   sets the desktop pattern
SetDisplay   sets the screen size and depth
SetDisplayEx   sets the screen size and depth
SetMultiDisplay   sets the screen size and depth
ExitWindows   exits or restarts Windows
RunProgram   runs an external program
WinHelp   shows a Windows help file
MsgBox   shows standard Windows message box
MsgBoxEx   shows custom message box
Prompt   shows prompt dialog box
Sleep   pauses the calling Director/Authorware program
HideTaskBar   shows/hides the Win95 task bar
SetCurrentDir   changes the DOS current directory
CopyText   copies text to the clipboard
PasteText  pastes text from the clipboard
EncryptText   encrypts a text string
DecryptText   decrypts a text string
PlaceCursor   positions the cursor
RestrictCursor   restricts the cursor to a specific screen area
FreeCursor   allows the cursor to move anywhere on the screen
SetVolume   sets the volume of wave and midi files and audio CD
GetVolume   gets the current sound volume of wave and midi files and audio CD
Environment   returns an environment variable
SetEnvironment   sets an environment variable
Administrator   returns Administrator status
UserName   returns name of current user
ComputerName   returns name of computer
InstallFont  installs TrueType or bitmap font
KeyIsDown  checks whether a key is being held down
KeyBeenPressed  checks whether a key has been pressed
EjectDisk  ejects CD
CreatePMGroup  creates a Program Manager or Start Menu group
DeletePMGroup  deletes a Program Manager or Start Menu group
PMGroupList  returns list of Program Manager or Start Menu groups
PMSubGroupList  returns list of Start Menu groups inside another group
CreatePMIcon  creates a Program Manager or Start Menu icon



DeletePMIcon  deletes a Program Manager or Start Menu icon
PMIconList  returns list of icons in a Program Manager or Start Menu group
SystemTime  returns the current system time/date
SetSystemTime  sets the system time/date
PrinterInfo  returns information about the installed printer
SetPrinter  changes settings for the default printer
PrintDlg   shows printer dialog box
PageSetupDlg   shows page setup dialog box
RefreshDesktop  refreshes the desktop icons

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DisableDiskErrors
Description: baDisableDiskErrors allows you to suppress the Windows 'drive not ready' 

error message.

Usage: baDisableDiskErrors( State )

Arguments: Integer.
State determines whether or not the error messages are shown. Can be 
either true or false.

Returns: Void.

Examples: Director:
baDisableDiskErrors( true )

Authorware:
baDisableDiskErrors( true )

Notes: This function disables the 'drive not ready' error message that occurs when 
Windows tries to access a file when there isn't a disk in the drive. This is a 
system wide setting and you should enable the disk errors again as soon as 
possible after disabling them.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DisableKeys
Description: baDisableKeys allows you to disable key presses.

Usage: Result = baDisableKeys( Disable , WindowHandle )

Arguments: Integer, integer.
WindowHandle is the handle of the window to disable. To disable the keys 
on all windows, use 0.
If Disable is true, key presses will be disabled. 
If Disable is false, key presses will be enabled again - the WindowHandle 
argument is ignored.

Returns: Integer.
When disabling the keys, returns 1 if the function was successful, otherwise
0.
When enabling the keys, will always return 1.

Examples: Director:
KeysOff = baDisableKeys( true , baWinHandle() )

Authorware:
KeysOff := baDisableKeys( true , baWinHandle() )

Notes: If you disable the keys using this function, make sure that you enable the 
function before your application quits.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DisableMouse
Description: baDisableMouse allows you to disable mouse clicks.

Usage: Result = baDisableMouse( Disable , WindowHandle )

Arguments: Integer, integer.
WindowHandle is the handle of the window to disable. To disable clicks on 
all windows, use 0.
If Disable is true, mouse clicks will be disabled. 
If Disable is false, mouse clicks will be enabled again - the WindowHandle 
argument is ignored.

Returns: Integer.
When disabling the mouse, returns 1 if the function was successful, 
otherwise 0.
When enabling the mouse, will always return 1.

Examples: Director:
MouseOff = baDisableMouse( true , baWinHandle() )

Authorware:
MouseOff := baDisableMouse( true , baWinHandle() )

Notes: If you disable the mouse using this function, make sure that you enable the 
function before your application quits.
Note that the cursor will still be visible and movable.

 

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DisableSwitching
Description: baDisableSwitching disables the task switching keys - Alt-Tab, Alt-Esc, and 

Ctrl-Esc. On Windows 95, the Ctrl-Alt-Del command is also disabled.

Usage: baDisableSwitching( On )

Arguments: Integer.
If On is true, then task switching will be disabled.

Returns: Void

Examples: Director:
baDisableSwitching( true )

Authorware:
baDisableSwitching( true )

Notes: If you disable switching, you should restore it again before your application 
quits. If you fail to do so, under Windows 95 the system keys will remain 
disabled. Under Windows 3.1, at best there will be loss of system resources;
more likely, a complete system crash.

For this function to work, you must first set the Director property exitLock to
true. Add this code set the exitLock to true before you call this function. 
This will also mean that your user can not quit the application using Alt-F4, 
Esc, etc.

Under Windows 95, if a password protected screen saver is activated after 
this function is called, task switching will be possible after the password has
been entered.

Ctrl-Alt-Delete will still be enabled under Windows NT, 2000 and XP.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DisableScreenSaver
Description: baDisableScreenSaver allows you to enable/disable the screen saver.

Usage: Result = baDisableScreenSaver( State )

Arguments: Integer.
State can be either true or false.

Returns: Integer.
Returns 1 if the screen saver was previously active, or 0 if is was inactive.

Examples: Director:
OldSS = baDisableScreenSaver( false )

Authorware:
OldSS := baDisableScreenSaver( false )

Notes: This function does not actually start the screen saver. It just determines 
whether or not the screen saver will appear after it's time out period has 
passed. If your user has previously elected not to have a screen saver 
active, then this function will have no effect.

See also: baScreenSaverTime
baSetScreenSaver

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



ScreenSaverTime
Description: baScreenSaverTime allows you to set the screen saver time out.

Usage: Result = baScreenSaverTime( Time )

Arguments: Integer.
Time is the value to set the screen saver time out to, in seconds.

Returns: Integer.
Returns the previous time out value.

Examples: Director:
OldTime = baScreenSaverTime( 120 )

Authorware:
OldTime := baScreenSaverTime( 120 )

See also: baDisableScreenSaver
baSetScreenSaver

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetScreenSaver
Description: baSetScreenSaver allows you to set the screen saver file.

Usage: Result = baSetScreenSaver( FileName )

Arguments: String.
FileName is the file name of the screen saver.

Returns: String.
Returns the file name of the previous screen saver.

Examples: Director:
OldSS = baSetScreenSaver( "c:\windows\ss.scr" )

Authorware:
OldSS := baSetScreenSaver( "c:\\windows\\ss.scr" )

Notes: You should use the full path name of the screen saver. A empty string will 
disable screen saving. This function will also enable the screen saver.

See also: baDisableScreenSaver
baScreenSaverTime

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetWallpaper
Description: baSetWallpaper allows you to set the desktop wallpaper.

Usage: Result = baSetWallpaper( FileName , Tile )

Arguments: String, integer
FileName is the file name of the wallpaper.
If Tile is true, the wallpaper will be tiled.

Returns: String.
Returns the file name of the previous wallpaper.

Examples: Director:
Old = baSetWallpaper( "c:\windows\arcade.bmp", 0 )

Authorware:
Old := baSetWallpaper( "c:\\windows\\arcade.bmp", 0 )

Notes: You should use the full path name of the wallpaper. A empty string will 
remove the wallpaper.

See also: baSetPattern

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetPattern
Description: baSetPattern allows you to set the desktop pattern.

Usage: Result = baSetPattern( Name , Pattern )

Arguments: String, string.
Name is the name of the pattern.
Pattern is a string containing the pattern.

Returns: String.
Returns the previous pattern.

Examples: Director:
Old = baSetPattern( "Bricks" , "187 95 174 93 186 117 234 245" )

Authorware:
Old := baSetPattern( "Bricks" , "187 95 174 93 186 117 234 245" )

Notes: The standard Windows patterns are listed in the contol.ini file.

See also: baSetWallpaper

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetDisplay
Description: baSetDisplay sets the screen size and depth.

Usage: Result = baSetDisplay( Width , Height , Depth , Mode , Force )

Arguments: Integer, integer, integer, string, integer.
Width is the new width of the screen in pixels.
Height is the new height of the screen in pixels.
Depth is the new depth of the screen in bits.
Mode is the way in which the new display is set. Can be:

"temp" temporarily change the display settings.
"perm" permanently change the display settings.
"test" tests whether the display can be set without restarting.

If Force is true, forces the display to change.

Returns: Integer.
Returns 0 if the display was changed or can be changed without restarting.
Returns 1 if Windows will need to be restarted for the change to take effect.
Returns less than 0 if another error occurred, eg invalid screen size.

Examples: Director:
OK = baSetDisplay( 640 , 480 , 8 , "temp" , false )

Authorware:
OK := baSetDisplay( 640 , 480 , 8 , "temp" , false )

Notes: This function will not work under Windows 3.1 - it will always return 0.
Not all display cards and drivers support screen changing without 
restarting.
The force option is not officially supported by Microsoft. It forces the display
to change without restarting. This may work correctly with some video 
cards and drivers, but can cause palette problems on others, and crash the 
system on some. You are advised to only use this option on known 
hardware and after extensive testing.

If you use the "temp" mode, then the user's preferred screen display will be
returned when the system is restarted. You can not set a "temp" mode 
unless it can be changed without restarting Windows. 

The "temp" mode should only be used if you do not intend the user to be 
able to access the task bar or desktop while your program is running. When
using the "temp" mode, Windows may not position the desktop icons and 
task bar in usable positions. 

See also: baSetDisplayEx
baScreenInfo

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  



Contents  



SetDisplayEx
Description: baSetDisplayEx sets the screen size and depth.

Usage: Result = baSetDisplay( Width , Height , Depth , Refresh, Mode , Force )

Arguments: Integer, integer, integer, integer, string, integer.
Width is the new width of the screen in pixels.
Height is the new height of the screen in pixels.
Depth is the new depth of the screen in bits.
Refresh is the new refresh frequency.
Mode is the way in which the new display is set. Can be:

"temp" temporarily change the display settings.
"perm" permanently change the display settings.
"test" tests whether the display can be set without restarting.

If Force is true, forces the display to change.

Returns: Integer.
Returns 0 if the display was changed or can be changed without restarting.
Returns 1 if Windows will need to be restarted for the change to take effect.
Returns less than 0 if another error occurred, eg invalid screen size.

Examples: Director:
OK = baSetDisplayEx( 640 , 480 , 8 , 75 , "temp" , false )

Authorware:
OK := baSetDisplayEx( 640 , 480 , 8 , 75 , "temp" , false )

Notes: This function will not work under Windows 3.1 - it will always return 0.
Not all display cards and drivers support screen changing without 
restarting.
The force option is not officially supported by Microsoft. It forces the display
to change without restarting. This may work correctly with some video 
cards and drivers, but can cause palette problems on others, and crash the 
system on some. You are advised to only use this option on known 
hardware and after extensive testing.

If you use the "temp" mode, then the user's preferred screen display will be
returned when the system is restarted. You can not set a "temp" mode 
unless it can be changed without restarting Windows. 

The "temp" mode should only be used if you do not intend the user to be 
able to access the task bar or desktop while your program is running. When
using the "temp" mode, Windows may not position the desktop icons and 
task bar in usable positions. 

Use can use baScreenInfo( "refresh" ) to get the current refresh frequency. 
It is possible to set a frequency that the display card is capable of using but 
that the monitor can not handle.

The refresh option will only work on NT, 2000 or XP.

See also: baSetDisplay
baSetDisplayEx
baSetMultiDisplay



baScreenInfo

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetMultiDisplay
Description: baSetMultiDisplay sets the screen size and depth of multiple monitors.

Usage: Result = baSetMultiDisplay( Monitor, Width , Height , Depth , Refresh, 
Mode , Flags )

Arguments: String, integer, integer, integer, integer, string, integer.
Monitor is the monitor to change.
Width is the new width of the screen in pixels.
Height is the new height of the screen in pixels.
Depth is the new depth of the screen in bits.
Refresh is the new refresh frequency.
Mode is the way in which the new display is set. Can be:

"temp" temporarily change the display settings.
"perm" permanently change the display settings.
"test" tests whether the display can be set without restarting.

Flags changes options of the function.

Returns: Integer.
Returns 0 if the display was changed or can be changed without restarting.
Returns 1 if Windows will need to be restarted for the change to take effect.
Returns less than 0 if another error occurred, eg invalid screen size.

Examples: Director:
OK = baSetMultiDisplay( "primary", 640 , 480 , 8 , 75 , "temp" , 2 )

Authorware:
OK := baSetMultiDisplay( "primary", 640 , 480 , 8 , 75 , "temp" , 2 )

Notes: Monitor is the name of the monitor to change, eg: "\\.\DISPLAY1". You can 
get a list of the current monitors by calling baMultiDisplayList. You can use 
a value of "primary" to set the primary display without knowing its name, 
and "secondary" to change the secondary display.

There are 2 flags defined: 
1 Force. Forces the display to change even if it doesn't support 

changing. Use with caution.
2 Reset. When the projector quits, the screen settings will be reset to 

their original values. Using this flag means there is no need for you to 
restore the display before you quit the projector. All displays in the 
system will be reset, not just the display specified in the function.

Not all display cards and drivers support screen changing without 
restarting.
The force option is not officially supported by Microsoft. It forces the display
to change without restarting. This may work correctly with some video 
cards and drivers, but can cause palette problems on others, and crash the 
system on some. You are advised to only use this option on known 
hardware and after extensive testing.

If you use the "temp" mode, then the user's preferred screen display will be
returned when the system is restarted. You can not set a "temp" mode 
unless it can be changed without restarting Windows. 



The "temp" mode should only be used if you do not intend the user to be 
able to access the task bar or desktop while your program is running. When
using the "temp" mode, Windows may not position the desktop icons and 
task bar in usable positions. You shold use the "perm" option if you intend 
to allow the user access to the desktop.

Use can use baScreenInfo( "refresh" ) to get the current refresh frequency. 
It is possible to set a frequency that the display card is capable of using but 
that the monitor can not handle.

The refresh option will only work on NT, 2000 or XP.

See also: baMultiDisplayInfo
baMultiDisplayList
baSetDisplay
baSetDisplayEx
baScreenInfo

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



ExitWindows
Description: baExitWindows exits or restarts Windows.

Usage: baExitWindows( Option )

Arguments: String.
Option is the type of exit. Can be:

"reboot" reboots the system
"restart" restarts Windows
"logoff" logs off Windows
"shutdown" shuts down the system
"poweroff" powers off the system

Returns: Void.

Examples: Director:
baExitWindows( "reboot" )

Authorware:
baExitWindows( "reboot" )

Notes: Not all versions of Windows support all the restarting options. If a particular 
function is not available, then another mode will be substituted according to
the following table.
The system security settings may prohibit some of these options from 
operating.

Windows
95/98/ME

Windows
NT/2000/XP

"reboot" reboot reboot
"restart" restart reboot
"shutdown" shutdown shutdown
"logoff" logoff logoff
"poweroff" poweroff poweroff

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



RunProgram
Description: baRunProgram runs an external application and can optionally wait until the

other program quits before continuing.

Usage: Result = baRunProgram( Program , State, Wait )

Arguments: String, string, integer.
Program is the name of the program to run.
State is how the program is to appear. Can be one of the following:

"Normal" shows in its usual state.
"Hidden" is not visible.
"Maximised" shows as a maximised window.
"Minimised" shows as an minimised icon.

Wait determines whether the Authorware program continues, or if it waits 
for the external program to finish before continuing. Can be either true or 
false.

Returns: Integer.
In 16 bit, returns the instance handle of the program. If this is greater than 
31, then the program started successfully. In 32 bit, returns a meaningless 
number greater than 31. 
If the return is less than 32, then an error occurred. Some possible error 
numbers are listed here.

0 System was out of memory, executable file was corrupt, or relocations were 
invalid.

1 Unspecified error. 
2 File was not found. 
3 Path was not found. 
5 Attempt was made to dynamically link to a task, or there was a sharing or 

network-protection error. 
6 Library required separate data segments for each task. 
8 There was insufficient memory to start the application. 
10 Windows version was incorrect. 
11 Executable file was invalid. Either it was not a Windows application or there was

an error in the .EXE image. 
12 Application was designed for a different operating system. 
13 Application was designed for MS-DOS 4.0. 
14 Type of executable file was unknown. 
15 Attempt was made to load a real-mode application (developed for an earlier 

version of Windows). 
16 Attempt was made to load a second instance of an executable file containing 

multiple data segments that were not marked read-only. 
19 Attempt was made to load a compressed executable file. The file must be 

decompressed before it can be loaded. 
20 Dynamic-link library (DLL) file was invalid. One of the DLLs required to run this 

application was corrupt. 
21 Application requires 32-bit extensions.

Examples: Director:
OK = baRunProgram( "Notepad.exe", "maximised", false )

Authorware:
OK := baRunProgram( "Notepad.exe", "maximised", false )

Notes: Where possible, the complete path to the program should be specified. If a 



path is not provided, then Windows searches for the file in the following 
order:

1 The current directory. 
2 The Windows directory.
3 The Windows system directory.
4 The directory containing the executable file for the current task.
5 The directories listed in the PATH environment variable. 
6 The directories mapped in a network.

You are not limited to supplying just an executable file name; you can add 
any other command line parameters that the executable supports. For 
example, to load the Adobe Acrobat Reader with mydoc.pdf, use the 
following call: 
baRunProgram( "acroread.exe mydoc.pdf", "maximised", false )

To print an Acrobat file, you can use
baRunProgram( "acroread.exe /p mydoc.pdf", "Hidden", true )

If used with the Wait option, this function will not return control to 
Authorware/Director until the jumped to program has quit. If your user 
switches back to the Authorware program, it will appear to have frozen. You
may choose to display an on-screen message to inform your user of this. 
You can also use the WaitTillActive function to pause execution until the 
Authorware/Director window becomes active again.

See also: baWaitTillActive
baWaitForWindow
baNextActiveWindow
baOpenFile
baShell

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



Shell
Description: baShell executes a file.

Usage: Result = baShell( Operation, Filename, Args, WorkDir, State )

Arguments: String, string, string, string, string.
Operation is the action to perform on the file.
Filename is the name of the file the shortcut will point to.
Args is any command line arguments to use.
WorkDir is the working directory to set.
State is the state to start the program in.

Returns: Integer.
Returns a number larger than 32 if successful.
Returns an error code. If the return is less than 32 than an error occurred. 
Possible errors include:

0 System was out of memory. 
2 File was not found. 
3 Path was not found. 
5 Sharing or network-protection error. 
6 Library required separate data segments for each task. 
8 There was insufficient memory to start the application. 
10 Windows version was incorrect. 
11 Executable file was invalid. Either it was not a Windows application or there was

an error in the .EXE image. 
12 Application was designed for a different operating system. 
13 Application was designed for MS-DOS 4.0. 
14 Type of executable file was unknown. 
15 Attempt was made to load a real-mode application (developed for an earlier 

version of Windows). 
16 Attempt was made to load a second instance of an executable file containing 

multiple data segments that were not marked read-only. 
19 Attempt was made to load a compressed executable file. The file must be 

decompressed before it can be loaded. 
20 Dynamic-link library (DLL) file was invalid. One of the DLLs required to run this 

application was corrupt.
21 Application requires 32-bit extensions.
26 A sharing violation occurred.
27 The filename association is incomplete or invalid.
29 The DDE transaction failed.
30 The DDE transaction could not be completed because other DDE transactions 

were being processed.
31 There is no application associated with the given filename

Examples: Director:
ok = baShell( "open", "c:\windows\notepad.exe", "myfile.txt" , "", "normal" )
ok = baShell( "edit", "myfile.htm" , "", "", "normal" )

Authorware:
ok := baShell( "open", "myfile.doc", "" , "", "normal" )

Notes: This function can execute either a document or a program file. If it opens a 
document file, the Args parameter is ignored. The Operation can be any 
action that is registered with the document type, most commonly 'open' 
and 'print'. If the specified action is not registered to the document, the 
function will return 31. Only the 'open' action works on program files.



See also: baOpenFile
baPrintFile
baRunProgram

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



WinHelp
Description: baWinHelp displays a windows Help file.

Usage: Result = baWinHelp(Cmd, HelpFile, Data )

Arguments: String, string, string.
Cmd is the help file command. Can be one of the following:

"Contents" shows the Contents page.
"Context" shows the page with the "Data" context number.
"PopUp" shows the page with the "Data" context number in a pop-up window.
"Show" shows the topic found that matches "Data" if there is one exact match. If 

there is more than one match, then the Search dialog box is displayed. If 
there is no exact match, then an error message will appear.

"Search" shows the topic found that matches "Data" if there is one exact match. If 
there is more than one match, then the Search dialog box is displayed. If 
there is no match, then the Search dialog box appears.

"Quit" closes the Help file.
"Help" shows the Help-On-Help page.
"Macro" executes the Help macro named in "Data".

HelpFile is the name of the Help file to display. This should include the 
complete path to the help file.
Data is a string containing extra information. This will vary according to the 
Cmd used. Note that even if a number is required, this must be passed as a 
string.

"Contents" Data should be "".
"Context" Data is the context number, eg "4".
"PopUp" Data is the context number, eg "4".
"Show" Data is the topic string to show, eg "About BudAPI".
"Search" Data is the topic string to search for, eg "About BudAPI".
"Quit" Data should be "".
"Help" Data should be "".
"Macro" Data should be the name of the macro to execute, eg "PlayMovie".

Returns: Integer. 
Returns 1 if successful, else 0. Not finding the Help file is not considered a 
failure.

Examples: Director:
OK = WinHelp( "Show", the pathName & "myhelp.hlp", "Flowers" )
OK = WinHelp( "Quit", the pathName & "myhelp.hlp", "" )

Authorware:
OK := WinHelp( "Show", FileLocation ^ "myhelp.hlp", "Flowers" )
OK := WinHelp( "Quit", FileLocation ^ "myhelp.hlp", "" )

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



MsgBox
Description: baMsgBox displays a standard Windows MessageBox

Usage: Result = baMsgBox( Message, Caption, Buttons, Icon, DefButton )

Arguments: String, string, string, string, integer.
Message is the message to display. This can contain more than one line.
Caption is the caption to show in the Title bar.
Buttons is the type of buttons to display. This can be one of the following:

"OK" 
"OKCancel" 
"RetryCancel"
"AbortRetryIgnore"
"YesNo"
"YesNoCancel"

Icon is the type of icon to display. This can be one of the following:
"Stop"
"Information"
"Question"
"Exclamation"
"NoIcon"

DefButton is the number of the default (selected) button. Can be 1, 2, or 3 
depending on the number of buttons. The button on the left hand side is 1.

Returns: String. 
Returns the name of the button clicked eg "OK" or "Ignore".

Examples: Director:
Answer = baMsgBox( "Is this is a test message?", "A question" , "YesNo", 
"Question" , 1 )
if Answer = "Yes" then baMsgBox("Correct!" , "The answer", "OK", 
"Information", 1)

Authorware:
Answer := baMsgBox( "Is this is a test message?", "A question" , "YesNo", 
"Question" , 1 )
if Answer = "Yes" then baMsgBox("Correct!" , "The answer", "OK", 
"Information", 1)

See also: MsgBoxEx

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



MsgBoxEx
Description: baMsgBoxEx displays a custom MessageBox

Usage: Result = baMsgBoxEx( Message, Caption, Button1, Button2, Button3, Icon, 
DefButton, Alignment, FontName, FontSize, FontWeight, xPos, yPos )

Arguments: String, string, string, string, string, string, integer, string, string, integer, 
integer, integer, integer.
Message is the message to display. This can contain more than one line
Caption is the caption to show in the Title bar
Button1 is the caption of the first button
Button2 is the caption of the second button
Button3 is the caption of the third button
Icon is the type of icon to display. This can be one of the following:

"Stop"
"Information"
"Question"
"Exclamation"
"NoIcon"

DefButton is the number of the default (selected) button. Can be 1, 2, or 3 
depending on the number of buttons. The button on the left hand side is 1.
Alignment is the alignment of the message text. Can be:

"left"
"center"
"right"

FontName is the name of the font to use
FontSize is the size of the font
FontWeight is the weight of the font, from 1 - 9
xPos is the horizontal position of the dialog
yPos is the vertical position of the dialog

Returns: String. 
Returns the name of the button clicked eg "OK" or "Cancel"

Examples: Director:
Answer = baMsgBoxEx( "How are you feeling?", "Online Doctor" , "Great", 
"Just OK", "Lousy", "Question" , 1 , "center", "Arial", 12, 4, 100, 100 )

Authorware:
Answer := baMsgBoxEx( "How are you feeling?", "Online Doctor" , "Great", 
"Just OK", "Lousy", "Question" , 1 , "center", "Arial", 12, 4, 100, 100 )

Notes: If you do not want to show all buttons, then make the button text for the 
button you don't want to appear an empty string. If you want to add a 
keyboard shortcut to a button, then place a & in front of the letter you want
it to use. eg "&Later". The size of the buttons does not change - you are 
limited to about 12 characters for the buttons.

The font weight is in a range from 1 - 9; 4 is normal, 7 is bold. Not all fonts 
have all weights. Use 0 if you want to use the standard weight of the font.

The values of the xPos and yPos are relative to the screen. Use -1 to center 
the dialog on the screen, -2 to center on the Director/Authorware window.

See also: MsgBox



Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



Prompt
Description: baPrompt displays a prompt dialog box.

Usage: Result = baPrompt( Caption, Instruction, DefaultText, Flags, X, Y )

Arguments: String, string, string, integer, integer, integer.
Caption is the caption to show in the Title bar.
Instruction is the instruction to display to the user.
DefaultText is the text to display in the edit box.
Flags changes the behaviour of the dialog.
X is the horizontal position of the dialog.
Y is the vertical position of the dialog.

Returns: String. 
Returns the text the user entered, or an empty string if cancelled

Examples: Director:
pw = baPrompt( "", "Please enter your password:" , "", 2, -1, -1 )

Authorware:
pw := baPrompt( "", "Please enter your password:" , "", 2, -1, -1 )

Notes: Two flags are currently defined:
1 only allow numbers to be entered
2 use ***** to mask the user input

The values of the X and Y are relative to the screen. Use -1 to center the 
dialog on the screen, -2 to center on the Director/Authorware window.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



Sleep
Description: baSleep pauses the calling Director/Authorware program.

Usage: baSleep( milliSecs )

Arguments: Integer.
milliSecs is the time to sleep for, in thousandths of a second.

Returns: Void. 

Examples: Director:
baSleep( 200 )

Authorware:
baSleep( 200 )

Notes: This function is most useful for 'lowering' the priority of Director to allow 
other programs a larger slice of available processing time - for example 
when playing a mpeg movie. Calling this function in a loop such as in a on 
exitFrame handler, will give other processes a chance to run while still 
allowing Director to process events such as mouse clicks. Larger numbers 
will give other programs more time, but slow down Director responses. 
Values between 50 and 200 would be a good starting point for 
experimentation.
This function is available in 16 bit, but its' effectiveness is limited because 
16 bit Windows has limited multitasking abilities.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



HideTaskBar
Description: baHideTaskBar shows/hides the Win95 task bar.

Usage: Result = baHideTaskBar( Hide )

Arguments: Integer.
If Hide is true, the task bar is hidden, else it will be visible.

Returns: Integer.
Returns the previous state of the task bar - 1 if it is visible, 0 if it isn't.

Examples: Director:
showing = baHideTaskBar( true )

Authorware:
showing := baHideTaskBar( true )

Notes: This function will not change the users task bar settings - the 'Always on 
top' and 'Auto hide' settings.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetCurrentDir
Description: baSetCurrentDir sets the current directory.

Usage: Result = baSetCurrentDir( Dir )

Arguments: String.
Dir is the full path name of the directory to make current.

Returns: Integer.
Returns 1 if successful, else 0.

Examples: Director:
OK = baSetCurrentDir( "c:\temp" )

Authorware:
OK := baSetCurrentDir( "c:\\temp" )

Notes: This function is useful when running external programs using the 
RunProgram function. Some programs, particularly DOS ones, require the 
current directory to be set first. The current directory can be retrieved using
the SysFolder function.

See also: SysFolder

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



CopyText
Description: baCopyText copies text to the clipboard.

Usage: Result = baCopyText( ClipText )

Arguments: String.
ClipText is the text to copy to the clipboard.

Returns: Integer. 
Returns 1 if the function is successful, otherwise 0.

Examples: Director:
OK = baCopyText( UserName )

Authorware:
OK := baCopyText( UserName )

See also: baPasteText

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



PasteText
Description: baPasteText copies text from the clipboard.

Usage: Result = baPasteText()

Arguments: Void.

Returns: String. 
Returns the text currently in the clipboard. If the clipboard is empty or 
unavailable, returns an empty string.

Examples: Director:
ClipText = baPasteText()

Authorware:
ClipText := baPasteText()

See also: baCopyText

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



EncryptText
Description: baEncryptText encrypts a text string.

Usage: Result = baEncryptText( String , Key )

Arguments: String, string.
String is the text to encrypt.
Key is the string to use as the encryption key.

Returns: String.
Returns the encrypted string.

Examples: Director:
text = baEncryptText( "MyPassword" , "This is my key" )

Authorware:
test := baEncryptText( "MyPassword" , "This is my key" )

Notes: This function uses an xor routine to encrypt the text. To decrypt the text, 
use the baDecryptText function using the same key. This will return the 
original text.
As well as encrypting the text, this function also puts the text through a 
uuencode type function to ensure that the encrypted string contains only 
printable characters. This means that the encrypted string will not be the 
same length as the original string.
The maximum size of the string that can be encrypted is 24000 characters.

See also: baDecryptText

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DecryptText
Description: baDecryptText decrypts a string encrypted with baEncryptText

Usage: Result = baDecryptText( String , Key )

Arguments: String, string.
String is the text to decrypt.
Key is the string that was used as the encryption key.

Returns: String.
Returns the decrypted string.

Examples: Director:
text = baDecryptText( "MyEncryptedPassword" , "This is my key" )

Authorware:
text := baDecryptText( "MyEncryptedPassword" , "This is my key" )

See also: baEncryptText

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  
Contents  



PlaceCursor
Description: baPlaceCursor positions the cursor on the screen.

Usage: baPlaceCursor( X, Y )

Arguments: Integer, integer.
X an Y is the new position of the cursor, measured from the top left corner 
of the screen.

Returns: Void.

Examples: Director:
baPlaceCursor( 200 , 300 )

Authorware:
baPlaceCursor( 200 , 300 )

See also: baRestrictCursor

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



RestrictCursor
Description: baRestrictCursor restricts the cursor to a specified part of the screen.

Usage: baRestrictCursor( Left, Top, Right, Bottom    )

Arguments: Integer, integer, integer, integer.
Left, Top, Right, Bottom define the rectangle that the cursor will be 
restricted to. They are measured in pixels from the top left corner of the 
screen.

Returns: Void.

Examples: Director:
baRestrictCursor( 100, 100, 200, 200 )

Authorware:
baRestrictCursor( 100, 100, 200, 200 )

Notes: Use the baFreeCursor function to return the cursor to its normal state.

See also: baFreeCursor
baPlaceCursor

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FreeCursor
Description: baFreeCursor allows the cursor to move anywhere on the screen. It is used 

to free the cursor after using baRestrictCursor.

Usage: baFreeCursor()

Arguments: Void.

Returns: Void.

Examples: Director:
baFreeCursor()

Authorware:
baFreeCursor()

See also: baRestrictCursor

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetVolume

Description: baSetVolume sets the volume level of the sound card for wave files and 
audio CD.

Usage: Result = baSetVolume( Device, Volume )

Arguments: String, integer.
Device is the device to change. Can be:

"master" sets the master volume
"wave" sets the volume of wave and video files
"cd" sets the volume of audio CD playback
"midi" sets the volume of an external midi device
"synth" sets the volume of the internal FM synthesizer
"master mute" controls the master mute
"wave mute" controls the wave mute
"cd mute" controls the CD mute
"synth mute" controls the built-in synthesizer mute

Volume is the volume level to set. The volume level can be between 0 
(silence) and 100 (maximum). For the mute devices, Volume can be either 1
for mute on, or 0 for mute off.

Returns: Integer. 
Returns 1 if successful, else 0.

Examples: Director:
OK = baSetVolume( "cd" ,    50 )

Authorware:
OK := baSetVolume( "cd" ,    50 )

Notes: Not all sound cards support this function. some cards will only support some
of the device types. They will return 0 if the function is not supported.

The function will set the volume on the first sound card found.

The master volume and the mute options are only available under 32 bit, 
and then only if the system has a mixer device installed.

Some sound cards do not set the volume precisely. For example, if you set 
the volume to 50, then call the baGetVolume function, it may return 48 or 
49.

See also: baGetVolume

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  





GetVolume

Description: baGetVolume gets the current volume level of wave files and audio CD.

Usage: Result = baGetVolume( Device    )

Arguments: String.
Device is the device to get the volume of. Can be:

"master" gets the master volume 
"wave" gets the volume of wave and video files
"cd" gets the volume of audio CD playback
"midi" gets the volume of an external midi device
"synth" gets the volume of the internal FM synthesizer
"master mute" gets the master mute state
"wave mute" gets the wave mute state
"cd mute" gets the CD mute state
"synth mute" gets the built-in synthesizer mute state

Returns: Integer. 
Returns the volume of the requested device. The volume level can be 
between 0 (silence) and 100 (maximum). The mute options will return 1 if 
the mute is on, or 0 if it isn't.
Returns -1 if the function is not supported.

Examples: Director:
Volume = baGetVolume( "wave" )

Authorware:
Volume := baGetVolume( "wave" )

Notes: Not all sound cards support this function. Some cards will only support 
some of the device types. They will return -1 if the function is not 
supported.

The function will get the volume from the first sound card found.

The master volume and the mute options are only available under 32 bit, 
and then only if the system has a mixer device installed.

If the left and right channels are at different levels, then the average of the 
two is returned.

Some sound cards do not set the volume precisely. For example, if you set 
the volume to 50 using the baSetVolume function, then call this function, it 
may return an 48 or 49.

See also: baSetVolume

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  



Contents  



Environment

Description: baEnvironment returns the value of an environment variable

Usage: Result = baEnvironment( Variable    )

Arguments: String.
Variable is the name of the variable to get.

Returns: String. 
Returns the value of the variable, or an empty string if the variable doesn't 
exist.

Examples: Director:
path = baEnvironment( "PATH" )

Authorware:
user    := baEnvironment( "USERNAME" )

Notes: There are both system (available to all applications) and local (available 
only to the current application) variables, and they may have the same 
name. This function will work with both types of variables. It will first check 
if there is a local variable, if there isn’t then it will check for a system 
variable.

See also: baSetEnvironment

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetEnvironment

Description: baSetEnvironment sets the value of an environment variable

Usage: Result = baSetEnvironment( Variable, Value    )

Arguments: String, string.
Variable is the name of the variable to get.
Value is the value to set the variable to.

Returns: Integer. 
Returns 1 if successful, otherwise 0.

Examples: Director:
OK = baSetEnvironment( "UserResults", "pass" )

Authorware:
OK    := baSetEnvironment( "UserResults", "pass" )

Notes: There are both system (available to all applications) and local (available 
only to the current application) variables, and they may have the same 
name. This function will only work with local variables, and will not change 
system variables. For example, you can not change the system path 
variable using this functions.

See also: baEnvironment

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



Administrator

Description: baAdministrator checks whether the current user has Administrator rights

Usage: Result = baAdministrator( )

Arguments: Void.

Returns: Integer. 
Returns 1 if the user has Administrator rights, otherwise 0.

Examples: Director:
OK = baAdministrator( )

Authorware:
OK    := baAdministrator( )

Notes: This function only works on Window NT, 2000 and XP. If used on 95, 98 or 
ME then it will always return 0.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



UserName

Description: baUserName returns the log on name of the current user

Usage: Result = baUserName( )

Arguments: Void.

Returns: String. 

Examples: Director:
name = baUserName( )

Authorware:
name    := baUserName( )

See also: baComputerName

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



ComputerName

Description: baComputerName returns the network name of the computer

Usage: Result = baComputerName( )

Arguments: Void.

Returns: String. 

Examples: Director:
name = baComputerName( )

Authorware:
name    := baComputerName( )

See also: baUserName

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



InstallFont

Description: baInstallFont installs a TrueType or Bitmap font.

Usage: Result = baInstallFont( FontFile , FontName )

Arguments: FontFile is the .ttf or .fon file to install.
FontName is the name of the font.

Returns: Integer. 
Returns 0 if font installs OK. Otherwise returns one of:

1 A font file with that name already exists.
2 The font file was not found.
3 Error copying font file.
4 Windows couldn't install the font.
5 The font file is an invalid name.

Examples: Director:
OK = baInstallFont( the moviePath & "arialb.ttf" , "Arial Bold"    )

Authorware:
OK := baInstallFont( FileLocation ^ "arialb.ttf" , "Arial Bold"    )

Notes: Most fonts are copyrighted material. You should not install a font unless you
are legally allowed to do so.
The name of the font should be taken from the Fonts Control Panel. The 
name that Windows identifies the font to applications is taken from 
information inside the font file, not the name you give it.
You should use the FontInstalled command to check whether or not a 
particular font is already installed before you try to install a new copy.
Director does not rebuild it's font list after it has been started. This means 
that the font will not be available to the projector that installed it unless it is
restarted. All versions of Authorware should be able to use the font 
immediately. There is usually no need to restart Windows.

See also: baFontInstalled
baFontStyleList
baFontList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



KeyIsDown
Description: baKeyIsDown checks whether a key is currently down.

Usage: Result = baKeyIsDown( Key )

Arguments: Integer.
Key is the virtual key code of the key to test.

Returns: Integer.
Returns 1 if Key is being held down, else 0.

Examples: Director:
KeyDown = baKeyIsDown( 65 ) -- check if the "a" key is down

Authorware:
KeyDown := baKeyIsDown( 65 ) -- check if the "a" key is down

Notes: A list of Virtual Key Codes is supplied. Some of these keys are not available 
in different versions of Windows.

See also: baKeyBeenPressed

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



KeyBeenPressed
Description: baKeyBeenPressed checks whether a key has been pressed since the last 

time the function was called.

Usage: Result = baKeyBeenPressed( Key )

Arguments: Integer.
Key is the virtual key code of the key to test.

Returns: Integer.
Returns 1 if Key has been pressed since the last time the function was 
called, else 0.

Examples: Director:
KeyBeenPressed = baKeyBeenPressed( 65 ) -- check if the "a" key has been 
pressed

Authorware:
KeyBeenPressed := baKeyBeenPressed( 65 ) -- check if the "a" key has been
pressed

Notes: A list of Virtual Key Codes is supplied. Some of these keys are not available 
in different versions of Windows. 
This function tracks key presses in all applications, not just yours.

See also: baKeyIsDown

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



EjectDisk
Description: baEjectDisk ejects a CD.

Usage: Result = baEjectDisk( Drive )

Arguments: String.
The drive to eject.

Returns: Integer.
Returns 1 if successful, else 0.

Examples: Director:
OK = baEjectDisk( "e:\" ) -- eject E drive

Authorware:
OK := baEjectDisk( "e:\\" )

Notes: You can specify the drive as a drive letter - "e:\", or as the name of the CD - 
"magic:". If using the name of the CD, the name must end with a colon.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



CreatePMGroup
Description: baCreatePMGroup makes a Program Manager or Start Menu group.

Usage: Result = baCreatePMGroup( Group )

Arguments: String.
Group is the name of the group to create.

Returns: Integer.
Returns 1 if successful, else 0.

Examples: Director:
OK = baCreatePMGroup( "Multimedia World" )

Authorware:
OK := baCreatePMGroup( "Multimedia World" )

See also: baDeletePMGroup
baPMGroupList
baCreatePMIcon
baDeletePMIcon
baPMIconList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SystemTime
Description: baSystemTime returns the current time/date.

Usage: Result = baSystemTime( Format )

Arguments: String.
Format is the time/date format to return.

Returns: String.
Returns the requested time/date.

Examples: Director:
theTime = baSystemTime( "date" )

Authorware:
theTime := baSystemTime( "Today is %A" ) -- returns the day eg "Today is 
Tuesday"

Notes: There are two predefined formats - "time" and "date"
"time" will return the current time in 24 hour format with leading zeros - 
hours, minutes and seconds eg "230412". It will always be 6 characters 
long.
"date" will return the date in year, month, day eg "19980321". It will always
be 8 characters long,
Other formatting is available. Any of these constants will be replaced by the
appropriate time/date - any other characters will be returned as is.

%a Abbreviated weekday name
%A Full weekday name
%b Abbreviated month name
%B Full month name
%d Day of month as decimal number (1 - 31)
%0d Day of month with leading 0
%H Hour in 24-hour format (0 - 23)
%0H Hour in 24-hour format with leading 0
%j Day of year as decimal number (1 - 366)
%0j Day of year as decimal number with leading 0
%m Month as decimal number (1 - 12)
%0m Month as decimal number with leading 0
%M Minute as decimal number (0 - 59)
%0M Minute as decimal number with leading 0
%S Second as decimal number (0 - 59)
%0S Second as decimal number with leading 0
%w  Weekday as decimal number (0 - 6; Sunday is 0)
%y  Year without century, as decimal number (00 - 99)
%Y  Year with century, as decimal number

Examples:
 "%d %B, %Y"                "2 June, 1998"

"It is %M past %H on %A"      "It is 23 past 10 on Tuesday"
"The time is %H:%0M:%0S"    "The time is 14:25:04" 

See also: baSetSystemTime



Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetSystemTime
Description: baSetSystemTime sets the current time/date.

Usage: Result = baSetSystemTime( Format, NewTime )

Arguments: String, string.
Format is the time/date format to set. Can be either "time" or "date".
NewTime is the time/date to set.

Returns: Integer.
Returns 1 if successful, otherwise 0.

Examples: Director:
ok = baSetSystemTime( "date", "19980523" ) - sets the date to 23 June 
1998

Authorware:
ok := baSetSystemTime( "time", "102300" ) - sets the time to 23 past 10

Notes: The format for the time or date must be as follows:
"time" is in 24 hour format with leading zeros - hours, minutes and seconds 
and must be 6 characters
"date"    is in year, month, day with leading zeros and must be 8 characters 
long,
The "date" and "time" formats are the same as those returned by 
baSystemTime

See also: baSystemTime

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



PrinterInfo
Description: baPrinterInfo returns information about the installed printers.

Usage: Result = baPrinterInfo( Info )

Arguments: String.
Info is the type of information required.
Can be

"installed" returns full list of installed printers, drivers and ports
"list" list of the names of installed printers
"default" the current default printer
"orientation" the orientation of the default printer
"paper" the current paper size of the default printer
"papers" the list of paper sizes supported by the default printer
"papername" the name of the current paper of the default printer
"papernames" the list of paper names of the default printer
"paperlength"the length of the paper in the default printer in 1/1000 mm
"paperwidth" the width of the paper in the default printer in 1/1000 mm
"copies" the number of copies to print

Returns: Depends on Info type.
Xtra: "installed", "list", "papers", "papernames" return a list; 
"default", "orientation", "paper", "papername" return a string; 
"paperlength", "paperwidth" and "copies" return an integer.
UCD: always returns a string.

Examples: Director:
printer = baPrinterInfo( "default" )

Authorware:
printerList := baPrinterInfo( "list" )

Notes: The "installed"    info type returns a list (Xtra) or a string (UCD) - one list 
element or line for each printer.    Each element will consist of the printer 
name, then the driver, then the port, all separated by commas. eg. 
["EPSON Stylus COLOR 400,EPS400,LPT1:", "Acrobat 
PDFWriter,PDFWRITR,DISK:"] (Xtra)
"EPSON Stylus COLOR 400,EPS400,LPT1:\rAcrobat 
PDFWriter,PDFWRITR,DISK:" (UCD)

The "list" Info type returns a list with just the printer names. eg
["EPSON Stylus COLOR 400", "Acrobat PDFWriter"]

The "orientation" Info type will return "Landscape", "Portrait" or "Unknown".

The "paper" Info type returns the size of the selected paper. It will be one of
the following values: 
"Letter", "LetterSmall", "Tabloid", "Ledger", "Legal", "Statement", "Executive", "A3", 
"A4", "A4Small", "A5", "B4", "B5", "Folio", "Quarto", "10x14", "11x17", "Note", 
"Envelope9", "Envelope10", "Envelope11", "Envelope12", "Envelope14", "CSheet", 
"DSheet", "ESheet", "EnvelopeDL", "EnvelopeC5", "EnvelopeC3", "EnvelopeC4", 
"EnvelopeC6", "EnvelopeC65", "EnvelopeB4", "EnvelopeB5", "EnvelopeB6", 
"EnvelopeItaly", "EnvelopeMonarch", "EnvelopePersonal", "FanFoldUS", 
"FanFoldStdGerman",    "FanFoldLegalGermany", "User", "Unknown".

The "papers" info type returns a list (Xtra) or string( UCD) of the paper sizes



supported by the default printer.

The "papername" type returns the name of the selected paper as shown by 
the printer driver.

The "papernames" type returns a list of the papers supported by the default
printer, as listed by the printer driver.

The "paper" option uses paper sizes pre-defined by Windows. Printer drivers
may define their own page sizes and names - if the selected paper is a 
printer-defined size, the function will return "Unknown".
The "papername" will return the name of the paper as displayed by the 
printer driver - this will be the name the user sees in printer setup dialog 
boxes.

See also: baSetPrinter
baPrintDlg

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetPrinter
Description: baSetPrinter changes settings for the default printer.

Usage: Result = baSetPrinter( Info, Data )

Arguments: String, any (Xtra) or string (UCD)
Info is the type of information to set.
Can be

"default" set the current default printer (string)
"orientation" the orientation of the default printer (string)
"paper" the selected paper size of the default printer (string)
"papername" the name of the selected paper of the default printer (string)
"copies" the number of copies to print (integer - Xtra, string - UCD)

Data is the data to set - the format depends on the info type. The UCD 
version will always be a string. The Xtra can be either a string or a number.

Returns: Integer
Returns 1 if successful, otherwise 0.

Examples: Director:
ok = baSetPrinter( "default", "Epson 400 Stylus Color" )
ok = baSetPrinter( "copies", 2 )

Authorware:
ok := baSetPrinter( "orientation", "landscape" )
ok := baSetPrinter( "copies", "2" ) -- UCD
ok := baSetPrinter( "copies", 2 ) -- Xtra

Notes: The "default" option only requires the name of the printer, not the port or 
driver.
The "paper" option uses the same names as the baPrinterInfo "paper". 
The "papername" option uses the same names as the baPrinterInfo 
"papername". 

See also: baPrinterInto
baPrinterDlg

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



PrintDlg
Description: baPrintDlg shows the system printer dialog.

Usage: Result = baPrintDlg( Flags )

Arguments: Integer
Flags alters the behaviour of the dialog. No Flags are presently defined, 
always use 0.

Returns: Integer
Returns 1 if user selects Print, otherwise 0.

Examples: Director:
ok = baPrinterDlg( 0 )

Authorware:
ok := baPrintDlg( 0 )

Notes: This function does not do any printing - it just shows the dialog box.

The return will be 1 if the user clicks the 'Print' button, or 0 if the user 
cancels. If the user clicks Print, then the selections the user has made in the
dialog will be set as the default printer settings. You can retrieve these 
settings by using baPrinterInfo. For example, baPrinterInfo( "copies" ) will 
return the number of copies the user selected.

if baPrintDlg( 0 ) = 1 then      -- user selected to print
copies = baPrinterInfo( "copies" )      -- get number of copies entered
doMyPrint( copies )      -- pass to your printing routine

end if

See also: baPrinterInto
baSetPrinter

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



PageSetupDlg
Description: baPageSetupDlg shows the system page setup dialog.

Usage: Result = baPageSetupDlg( Flags )

Arguments: Integer
Flags alters the behaviour of the dialog. See Notes for details.

Returns: Integer
Returns 1 if user selects OK, otherwise 0.

Examples: Director:
ok = baPageSetupDlg( 1 )

Authorware:
ok := baPageSetupDlg( 1 )

Notes: This function does not do any printing - it just shows the dialog box.

The return will be 1 if the user clicks the 'OK' button, or 0 if the user 
cancels. If the user clicks OK, then the selections the user has made in the 
dialog will be set as the default printer settings. You can retrieve these 
settings by using baPrinterInfo.

The following flags are defined.

1 Disable the Printer button.
2 Disable the Orientation settings
4 Disable the Paper size selection
8 Hides the Network button

16 Disable the margin settings
32 Disable the page drawing icon

These flags can be added together, eg baPageSetupDlg( 2 + 4 ) disables 
the orientation and paper size options.

See also: baPrinterInto
baSetPrinter

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



RefreshDesktop
Description: baRefreshDesktop refreshes the desktop icons.

Usage: baRefreshDesktop( Wait )

Arguments: Integer.
If Wait is true, then the function will wait until the update is complete before
returning.

Returns: Void.

Examples: Director:
baRefreshDesktop( true )

Authorware:
baRefreshDesktop( false )

Notes: This function would typically be used after making registry changes that 
affect the icons displayed by files, such as changing a file association.
This function only works in the 32 bit Xtra/UCD. If used in 16 bit, it will do 
nothing.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DeletePMGroup
Description: baDeletePMGroup deletes a Program Manager or Start Menu group.

Usage: Result = baDeletePMGroup( Group )

Arguments: String.
Group is the name of the group to delete.

Returns: Integer.
Returns 1 if successful, else 0.

Examples: Director:
OK = baDeletePMGroup( "Multimedia World" )

Authorware:
OK := baDeletePMGroup( "Multimedia World" )

Notes: The group does not have to be empty for it to be deleted.

See also: baCreatePMGroup
baPMGroupList
baCreatePMIcon
baDeletePMIcon
baPMIconList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



PMGroupList
Description: baPMGroupList returns a list of all Program Manager or Start Menu groups.

Usage: Result = baPMGroupList( )

Arguments: Void.

Returns: List (Xtra) or String (UCD).
Returns a list or string containing all Program Manager groups.

Examples: Director:
GroupList = baPMGroupList( )

Authorware:
GroupList := baPMGroupList( )

Notes: The return for the UCD version is a string with each group on a separate 
line. You can use the Authorware GetLine function to retrieve each group.

See also: baPMSubGroupList
baCreatePMGroup
baDeletePMGroup
baCreatePMIcon
baDeletePMIcon
baPMIconList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



PMSubGroupList
Description: baPMSubGroupList returns a list of Start Menu groups inside another group.

Usage: Result = baPMSubGroupList( GroupName )

Arguments: GroupName.
Group is the name of the group to get the list of

Returns: List (Xtra) or String (UCD).
Returns a list or string containing the groups.

Examples: Director:
GroupList = baPMSubGroupList( "Accessories" )

Authorware:
GroupList := baPMSubGroupList( "Accessories " )

Notes: This function returns the groups inside a group. These 'nested groups' are 
only possible in Windows 95/NT, and this function is only available in the 32
bit Xtra/UCD. If used in 16 bit, it will return an empty string/list. 
To get the contents of a group inside a group, place a "\" between the 
groups ("\\" in Authorware) eg 
baPMSubGroupList( "Accessories\Multimedia" ).

The return for the UCD version is a string with each group on a separate 
line. You can use the Authorware GetLine function to retrieve each group.

See also: baPMGroupList
baCreatePMGroup
baDeletePMGroup
baCreatePMIcon
baDeletePMIcon
baPMIconList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



CreatePMIcon
Description: baCreatePMIcon creates a Program Manager or Start Menu icon.

Usage: Result = baCreatePMIcon( Command, Title, Icon, IconNumber    )

Arguments: String, string, string, integer.
Command is the command line to use in the icon.
Title is the name that appears under the icon.
Icon is the name of the icon to use.
IconNumber is the number of the icon to use.

Returns: Integer.
Returns 1 if successful, else 0.

Examples: Director:
OK = baCreatePMIcon( "d:\mterms.exe", "Multimedia Terms" , "d:\
mterms.ico" , 0 )

Authorware:
OK := baCreatePMIcon( "d:\\mterms.exe", "Multimedia Terms" , " d:\\
mterms.ico" , 0 )

Notes: The icon will be added to the active Program Manager group. To ensure that
the group you want to add the icon to is active, you should always call 
baCreatePMGroup before you use this function (even if the group already 
exists). This will make the group the active one. If you are adding multiple 
icons, you only need to make one call to baCreatePMGroup before you start 
adding.
If you create a group, and want to add icons to it, you should allow enough 
time for Windows to create the group before you try to add an icon to it. A 
wait of one second should be enough, but slow machines running Win95 
may take longer.

The Icon parameter can be either an .ico, .exe or .dll file. If the file is a .ico, 
then the IconNumber parameter is ignored. If it is a .exe or .dll file, then the
IconNumber is the number of the icon in that file to use. If the Icon is an 
empty string (""), then the first icon in the Command .exe file will be used.
For example:
baCreatePMIcon( "d:\mterms.exe", "Multimedia Terms" , "" , 0 )
will use the default icon for d:\mterms.exe.

baCreatePMIcon( "d:\mterms.exe", "Multimedia Terms" , "d:\mterms.ico" , 
0 ) 
will use the d:\mterms.ico icon.

baCreatePMIcon( "d:\mterms.exe", "Multimedia Terms" , "c:\windows\
moreicons.dll" , 5 )
will use the fifth icon in moreicons.dll.

You need to ensure that the filenames you pass into the function do not 
contain a space – use the baShortFilename function to return the short 
version of a filename.

See also: baCreatePMGroup



baDeletePMGroup
baPMGroupList
baPMSubGroupList
baDeletePMIcon
baPMIconList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DeletePMIcon
Description: baDeletePMIcon deletes a Program Manager or Start Menu icon.

Usage: Result = baDeletePMIcon( Icon )

Arguments: String.
Icon is the name of the icon to delete.

Returns: Integer.
Returns 1 if successful, else 0.

Examples: Director:
OK = baDeletePMIcon( "Multimedia Terms" )

Authorware:
OK := baDeletePMIcon( "Multimedia Terms" )

Notes: The icon will be deleted from the active Program Manager group. To ensure 
that the group you want to delete the icon from is active, you should always
call baCreatePMGroup before you use this function (even if the group 
already exists). This will make the group the active one. If you are deleting 
multiple icons, you only need to make one call to baCreatePMGroup before 
you start deleting.

See also: baCreatePMGroup
baDeletePMGroup
baPMGroupList
baPMSubGroupList
baCreatePMIcon
baPMIconList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



PMIconList
Description: baPMIconList returns a list containing all the icons in a Program Manager 

group.

Usage: Result = baPMIconList( Group )

Arguments: String.
Group is the name of the group to get the icons of.

Returns: List (Xtra) or String (UCD).
Returns a list or string containing all the icons in Group.
If Group does not exist or it empty, then an empty list or string will be 
returned.

Examples: Director:
IconList = baPMIconList( "Macromedia" )

Authorware:
IconList := baPMIconList( "Macromedia" )

Notes: The return for the UCD version is a string with each icon on a separate line. 
You can use the Authorware GetLine function to retrieve each group.
In 32 bit, you can also get the contents of a nested group, by placing a "\" 
("\\" in Authorware) between the groups. eg baPMIconList( "Accessories\
Multimedia" ) will get the contents of the Multimedia group, inside the 
Accessories group.

See also: baCreatePMGroup
baDeletePMGroup
baPMGroupList
baPMSubGroupList
baCreatePMIcon
baDeletePMIcon

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



File functions

Specifying file names  

FileAge   returns the age of a file
FileExists   checks whether a file exists
FolderExists   checks whether a folder exists
CreateFolder   creates a new folder
DeleteFolder   deletes an empty folder
RenameFile   renames a file or folder
DeleteFile   deletes a file
DeleteXFiles   deletes files with wildcard matching
XDelete   deletes files with wildcard matching, including sub-directories
FileDate   returns the date of a file
FileDateEx   returns the date of a file/folder
SetFileDate   sets the date of a file
FileSize   returns the size of a file
FileAttributes   returns the attributes of a file
SetFileAttributes   sets the attributes of a file
RecycleFile   places a file in the Win95/NT recycle bin.
CopyFile   copies a file.
CopyXFiles   copies multiple files with wildcard matching.
XCopy   copies multiple files with wildcard matching, including sub-

directories.
CopyFileProgress   copies file while displaying progress bar.
CopyXFilesProgress  copies multiple files while displaying progress bar.
XCopyProgress   copies multiple files, including sub-folders, while displaying progress 

bar.
FileVersion   returns the version of a file.
FileList   returns a list of files in a folder.
FolderList   returns a list of folders in a folder.
GetFilename   displays a file selection dialog.
GetFolder   displays a folder selection dialog.
GetDisk   displays a disk selection dialog.
FolderSize   returns the size of a folder.
MoveOnReboot   moves a file on system reboot.
FindFirstFile   searches for the first file matching a specification
FindNextFile   searches for the next file matching a specification
FindClose   finishes a search started with baFindFirstFile
EncryptFile   encrypts/decrypts a file
FindDrive   searches all drives for a specified file
Shell   executes a file
OpenFile   opens a file using it's associated program
OpenURL   opens a URL using the default browser
PrintFile   prints a file using it's associated program
ShortFileName   returns the DOS version of a Win95 long file name



LongFileName   returns the long version of a short file name
TempFileName   returns a temporary file name guaranteed not to exist
MakeShortcut   creates a Win95/NT shortcut
MakeShortcutEx   creates a Win95/NT shortcut
ResolveShortcut   returns the file a shortcut points to

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



Specifying file names

You should always pass in the full path name to the file you want to work with. For example, 
use

baOpenFile( "c:\data\myfile.pdf", "normal" )

rather than

baOpenFile( "myFile.pdf", "normal" )

You should do this even when the file you are working with is in the same folder as your 
projector or application. If you want to work with a file that is relative to your projector or 
application, then you can use Lingo's the applicationPath or the moviePath variables; or 
Authorware's FileLocation variable. These variables return the path to the 
projector/application or the current .dir file. To open a file in the same folder as your 
projector, use:

baOpenFile( the applicationPath & "myFile.pdf", "normal" )    -- Director
baOpenFile( FileLocation ^ "myFile.pdf", "normal" )    -- Authorware

To open a file in a folder, add it to the path.

baOpenFile( the applicationPath & "data\\myFile.pdf", "normal" )    -- Director
baOpenFile( FileLocation ^ "data\myFile.pdf", :"normal" )    -- Authorware

In Director, you can also use Lingo's @ operator. This is the same as the moviePath, but can 
be used to specify cross-platform path names. Where a : / or \ character is included in your 
path name, it will be translated to the appropriate path separator.

baOpenFile( "@:Data:myFile.pdf", "normal" )
baOpenFile( "@/Data/myFile.pdf", "normal" )
baOpenFile( "@\Data\myFile.pdf", "normal" )

will all open the myfile.pdf in the Data subfolder on both platforms.
You must include a folder separator after the @.
For the @ operator to work, you need Mac version 1.4 and Windows 3.6.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FileAge

Description: baFileAge returns the date of a file in seconds.

Usage: Result = baFileAge( FileName )

Arguments: String
FileName is the file to get the age of.

Returns: Integer. 
Returns the age of the file in seconds.

Examples: Director:
Age = baFileAge( "student.dat" )

Authorware:
Age := baFileAge( "student.dat" )

Notes: The number returned is the number of seconds since an arbitrary date. The 
number means little by itself, but can be used to compare the dates of two 
files. The file with higher number is the newer file. For example:
if baFileAge( "c:\\data\\student.dat"" ) > baFileAge( "a:\\student.dat" ) then 

-- file on "C" drive is newer than the one on "A" drive.

See also: baFileDate
baFileDateEx
baFileVersion

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FileExists
Description: baFileExists reports whether or not a specific file exists.

Usage: Result = baFileExists( FileName )

Arguments: String.
FileName is the name of the file. It should include the full path name.

Returns: Integer.
Returns 1 if the file exists, otherwise 0.

Examples: Director:
File = baFileExists( the pathName & "test.dat" )

Authorware:
File := baFileExists( FileLocation ^ "test.dat" )

See also: baRenameFile
baFolderExists

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FolderExists

Description: baFolderExists checks whether or not a folder exists.

Usage: Result = baFolderExists( FolderName )

Arguments: String
FolderName is the folder to check for.

Returns: Integer. 
Returns 1 if the folder exists, else 0.

Examples: Director:
OK = baFolderExists( "c:\data" )

Authorware:
OK := baFolderExists( "c:\\data" )

See also: baCreateFolder
baDeleteFolder
baFileExists

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



CreateFolder

Description: baCreateFolder creates a new folder.

Usage: Result = baCreateFolder( FolderName )

Arguments: String
FolderName is the folder to create.

Returns: Integer. 
Returns 1 if the folder was successfully created or already exists, else 0.

Examples: Director:
OK = baCreateFolder( "c:\data\courses" )

Authorware:
OK := baCreateFolder( "c:\\data\\courses" )

Notes: This function will create any intermediate folders that are needed. For 
example, baCreateFolder( "c:\data\courses\biology" ) will create "c:\data", 
then "c:\data\courses", then "c:\data\courses\biology".

See also: baFolderExists
baDeleteFolder

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DeleteFolder

Description: baDeleteFolder deletes an empty folder.

Usage: Result = baDeleteFolder( FolderName )

Arguments: String
FolderName is the folder to delete.

Returns: Integer. 
Returns 1 if the folder was successfully deleted or doesn't exist, else 0.

Examples: Director:
OK = baDeleteFolder( "c:\data" )

Authorware:
OK := baDeleteFolder( "c:\\data" )

Notes: This function will only delete a folder that doesn't contain any files or sub-
directories.

See also: baFolderExists
baCreateFolder

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



RenameFile

Description: baRenameFile renames a file or folder.

Usage: Result = baRenameFile( FileName , NewName )

Arguments: String
FileName is the file/folder to rename.
NewName is the new name for the file/folder.

Returns: Integer. 
Returns 1 if the file was successfully renamed, else 0.

Examples: Director:
OK = baRenameFile( "c:\data\student.dat" , "c:\data\student.bak" )

Authorware:
OK := baRenameFile( "c:\\data\\student.dat" , "c:\\data\\student.bak" )

Notes: This function will fail if a file called NewName already exists. The full path 
name to both the FileName and the NewName should be given.
You can also move a file or folder to a different folder if the destination file 
is on the same drive as the source file. eg: baRenameFile( "c:\data\
student.dat", "c:\temp\student.dat" ) moves student.dat file from c:\data to 
c:\temp.

See also: baFileExists
baDeleteFile

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DeleteFile

Description: baDeleteFile deletes a file.

Usage: Result = baDeleteFile( FileName )

Arguments: String
FileName is the file to delete.

Returns: Integer. 
Returns 1 if the file was successfully deleted or doesn't exist, else 0.

Examples: Director:
OK = baDeleteFile( "c:\data\student.bak" )

Authorware:
OK := baDeleteFile( "c:\\data\\student.bak" )

See also: baDeleteXFiles
baRenameFile
baRecycleFile

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



DeleteXFiles

Description: baDeleteXFiles deletes files with wildcard matching.

Usage: Result = baDeleteXFiles( DirName , FileSpec )

Arguments: String, string.
DirName is the folder to delete the files from.
FileSpec determines what files are deleted.

Returns: Integer. 
Returns 1 if all the matching files were successfully deleted or if DirName 
doesn't exist, else 0.

Examples: Director:
OK = baDeleteXFiles( "c:\data" , "*.bak" )

Authorware:
OK := baDeleteXFiles( "c:\\data" , "*.bak" )

Notes: The FileSpec argument follows normal DOS wildcard rules. A * means match
any character in the file name. 
So *.* deletes all files in the directory; *.bmp deletes all files with a .bmp 
extension; T*.* deletes all files starting with the letter T.

See also: baDeleteFile
baFileExists

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



XDelete

Description: baXDelete deletes files with wildcard matching, including sub-directories.

Usage: Result = baXDelete( DirName , FileSpec )

Arguments: String, string.
DirName is the folder to delete the files from.
FileSpec determines what files are deleted.

Returns: Integer. 
Returns 1 if all the matching files were successfully deleted or if DirName 
doesn't exist, else 0.

Examples: Director:
OK = baXDelete( "c:\data" , "*.bak" )

Authorware:
OK := baXDelete( "c:\\data , "*.bak" )

Notes: Any empty directories that are left will also be deleted.
The FileSpec argument follows normal DOS wildcard rules. A * means match
any character in the file name. 
So *.* deletes all files in the directory; *.bmp deletes all files with a .bmp 
extension; T*.* deletes all files starting with the letter T.

See also: baDeleteFile
baDeleteXFiles
baFileExists

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FileDate

Description: baFileDate returns the date of a file as a string.

Usage: Result = baFileDate( FileName , DateFormat , TimeFormat )

Arguments: String, string, string
FileName is the file to get the date of.
DateFormat is the desired format of the date,
TimeFormat is the desired format of the time.

Returns: String. 
Returns the date of the file, or an empty string if the file doesn't exist.

Examples: Director:
date = baFileDate( "c:\data\student.dat" , "dd-mm-yy" , "hh:nn:ss" )

Authorware:
date := baFileDate( "c:\\data\\student.dat" , "dd-mm-yy" , "hh:nn:ss" )

Notes: The date format can consist of "d" for day, "m" for month, "y" for year.
The time format can consist of "h" for hours, "n" for minutes, "s" for 
seconds. (Note the "n" for minutes.)
A single letter ("d") returns the exact number eg "5".
A double letter ("dd") returns the number with a leading zero if required eg 
"05".
A triple letter ("ddd") returns the short name eg "Mon".
A quad letter ("dddd") returns the full name eg "Monday".
Any letters other than those listed above will returned as is - they can be 
used for separators eg "dd-mm-yy" returns "05-11-97"; "d mmmm, yyyy" 
returns "5 November, 1997" 
If the format is an empty string, then the date or time will not be returned.

See also: baFileDateEx

baSetFileDate
baFileAge
baFileVersion

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FileDateEx

Description: baFileDateEx returns the date of a file or folder as a string.

Usage: Result = baFileDate( FileName , DateType , DateFormat , TimeFormat )

Arguments: String, string, string, string
FileName is the file to get the date of.
DateType is the data to return. Can be one of:

"created"
"modified"
"accessed"

DateFormat is the desired format of the date,
TimeFormat is the desired format of the time.

Returns: String. 
Returns the date of the file/folder, or an empty string if the file/folder 
doesn't exist.

Examples: Director:
date = baFileDateEx( "c:\data\student.dat" , "created" , "dd-mm-yy" , 
"hh:nn:ss" )

Authorware:
date := baFileDateEx( "c:\\data\\student.dat" , "modified" ,"dd-mm-yy" , 
"hh:nn:ss" )

Notes: The date format can consist of "d" for day, "m" for month, "y" for year.
The time format can consist of "h" for hours, "n" for minutes, "s" for 
seconds. (Note the "n" for minutes.)
A single letter ("d") returns the exact number eg "5".
A double letter ("dd") returns the number with a leading zero if required eg 
"05".
A triple letter ("ddd") returns the short name eg "Mon".
A quad letter ("dddd") returns the full name eg "Monday".
Any letters other than those listed above will returned as is - they can be 
used for separators eg "dd-mm-yy" returns "05-11-97"; "d mmmm, yyyy" 
returns "5 November, 1997" 
If the format is an empty string, then the date or time will not be returned.

See also: baFileDate
baSetFileDate
baFileAge
baFileVersion

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  





SetFileDate

Description: baSetFileDate sets the date of a file.

Usage: Result = baSetFileDate( FileName, Year, Month, Day, Hour, Minute, Second )

Arguments: String, integer, integer, integer, integer, integer, integer
FileName is the file to set the date of.
Year is the year.
Month is the month, January = 1.
Day is the day of the month
Hour is the hour in 24 hour format (0-23)
Minute is the minute.
Second is the number of seconds.

Returns: Integer. 
Returns 1 if successful, else 0.

Examples: Director:
OK = baSetFileDate( "c:\data\student.dat", 2001, 12, 5, 15, 23, 12 )

Authorware:
OK := baSetFileDate( "c:\\data\\student.dat", 2001, 12, 5, 15, 23, 12 )

Notes: If an invalid date is entered then the function will fail.

See also: baFileDate
baFileAge
baFileVersion

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FileSize

Description: baFileSize returns the size of a file.

Usage: Result = baFileSize( FileName )

Arguments: String.
FileName is the file to get the size of.

Returns: Integer. 
Returns the size of the file in bytes, or -1 if the file doesn't exist.

Examples: Director:
size = baFileSize( "c:\data\student.dat" )

Authorware:
size := baFileSize( "c:\\data\\student.dat" )

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FileAttributes

Description: baFileAttributes returns the attributes of a file.

Usage: Result = baFileAttributes( FileName )

Arguments: String.
FileName is the file to get the attributes of.

Returns: String. 
Returns a string containing all the attributes that are set. 
Can be any combination of:

"r" read-only
"a" archive
"h" hidden
"s" system

Returns an empty string if FileName doesn't exist.

Examples: Director:
att = baFileAttributes( "c:\data\student.dat" )

Authorware:
att := baFileAttributes( "c:\\data\\student.dat" )

Notes: You can use the Director contains or Authorware Find function to test 
whether a particular attribute is set. eg.

if Find( "r" , baFileAttributes( FileName ) ) <> 0 then    -- file is read only

if baFileAttributes( FileName ) contains "r" then -- file is read only

See also: baSetFileAttributes

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetFileAttributes

Description: baSetFileAttributes sets the attributes of a file.

Usage: Result = baSetFileAttributes( FileName , Attributes )

Arguments: String, string.
FileName is the file to get the attributes of.
Attributes are the attributes to set.
Can be any combination of:

"r" read-only
"a" archive
"h" hidden
"s" system

An empty string removes all attributes.

Returns: Integer. 
Returns 1 if successful, else 0. 

Examples: Director:
OK = baSetFileAttributes( "c:\data\student.dat" , "rh" ) -- make file hidden 
and read-only

Authorware:
OK := baSetFileAttributes( "c:\\data\\student.dat" , "" ) -- clear all attributes

See also: baFileAttributes

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



RecycleFile

Description: baRecycleFile places a file in the Win95/NT recycle bin.

Usage: Result = baRecycleFile( FileName )

Arguments: String
FileName is the file to recycle.

Returns: Integer. 
Returns 1 if the file was successfully recycled or doesn't exist, else 0.

Examples: Director:
OK = baRecycleFile( "c:\data\student.bak" )

Authorware:
OK := baRecycleFile( "c:\\data\\student.bak" )

Notes: This function only works in 32 bit. If used in 16 bit, the file will be 
immediately deleted.

See also: baDeleteFile

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



CopyFile

Description: baCopyFile copies a file.

Usage: Result = baCopyFile( SourceFile , DestFile , Overwrite )

Arguments: String, string, string.
SourceFile is the file to copy.
DestFile is the name to copy it to.
Overwrite determines how the copy is done. Can be:

"Always" always copies the file
"IfNewer" copies the file if SourceFile is newer than DestFile
"IfNotExist" copies only if DestFile does not already exist

Returns: Integer. 
Returns 0 if the file was copied successfully, otherwise one of these:

1 Invalid Source file name
2 Invalid Dest file name
3 Error reading the Source file
4 Error writing the Dest file
5 Couldn't create directory for Dest file
6 Dest file exists
7 Dest file is newer that Source file

Examples: Director:
OK = baCopyFile( "c:\data\student.dat" , "c:\data\backup\student.dat" , 
"IfNewer" )

Authorware:
OK := baCopyFile( "c:\\data\\student.dat" , "c:\\data\\backup\\student.dat" , 
"IfNewer" )

Notes: By default, this function will not overwrite an existing file if that file is 
marked as read-only. However, by adding "+"    to the "Always" and 
"IfNewer" options (eg "Always+" or "IfNewer+"), the files will be overwritten
if they are read-only.

A return value of 6 (Dest file exists) can only be returned when Overwrite is 
"IfNotExist".
A return value of 7 (Dest file is newer than Source file) can only be returned
when Overwrite is "IfNewer". The other return values can be returned for all
Overwrite options.
The "IfNewer" option operates as follows: if both files have internal version 
numbers, then these numbers are used for comparison, otherwise the dates
of the two files are used for comparison.
The DestFile must contain the full name of the file, not just the name of the 
folder it is being copied to.
The 16 bit version will not copy system or hidden files, but the 32 bit 
version can. The 16 bit version will return 1 if you attempt to copy a hidden 
file.
The new file will be set to archive and not read-only.

See also: baCopyXFiles

baXCopy



Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



CopyXFiles

Description: baCopyXFiles copies multiple files from one folder to another folder, with 
wildcard matching.

Usage: Result = baCopyXFiles( SourceDir , DestDir , FileSpec , Overwrite )

Arguments: String, string, string, string.
SourceDir is the folder to copy from.
DestDir is the folder to copy to.
FileSpec determines what files are copied.
Overwrite determines how the copy is done. Can be:

"Always" always copies the file 
"IfNewer" copies the file if SourceFile is newer than DestFile
"IfNotExist" copies only if DestFile does not already exist

Returns: Integer. 
Returns 0 if all the files were copied successfully, otherwise one of these:

1 Invalid SourceDir name
2 Invalid DestDir file name
3 Error reading a Source file
4 Error writing a Dest file
5 Couldn't create directory for Dest files
6 Dest file exists
7 Dest file is newer that Source file
8 No files matched the specified wildcard

Examples: Director:
OK = baCopyXFiles( "c:\data" , "d:\backup" , "*.dat " , "IfNewer" )

Authorware:
OK := baCopyXFiles( "c:\\data" , "d:\\backup" , "*.dat" , "IfNewer" )

Notes: By default, this function will not overwrite an existing file if that file is 
marked as read-only. However, by adding "+"    to the "Always" and 
"IfNewer" options (eg "Always+" or "IfNewer+"), the files will be overwritten
if they are read-only.

The return value will not be 0 if any file is not copied. For example, if you 
specify
baCopyXFiles( "c:\data" , "d:\backup" , "*.*" , "IfNewer" )
and any of the files in c:\data are newer than the ones in d:\backup, the 
return result will be 7 (Dest file is newer than Source). A result of 0 will be 
returned only if none of the files    in c:\data is newer than d:\backup.

The FileSpec argument follows normal DOS wildcard rules. A * means match
any character in the file name. 
So *.* copies all files; *.bmp copies all files with a .bmp extension; T*.* 
copies all files starting with the letter T.

A return value of 6 (Dest file exists) can only be returned when Overwrite is 
"IfNotExist".
A return value of 7 (Dest file is newer than Source file) can only be returned
when Overwrite is "IfNewer". The other return values can be returned for all
Overwrite options.
The "IfNewer" option operates as follows: if both files have internal version 



numbers, then these numbers are used for comparison, otherwise the dates
of the two files are used for comparison.

The 16 bit version can not copy system or hidden files, but the 32 bit 
version can. The new files will be set to archive and not read-only.

See also: baCopyFile
baXCopy

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



XCopy

Description: baXCopy copies multiple files from one folder to another folder, with 
wildcard matching, including sub-directories.

Usage: Result = baXCopy( SourceDir , DestDir , FileSpec , Overwrite, MakeDir )

Arguments: String, string, string, string, integer.
SourceDir is the folder to copy from.
DestDir is the folder to copy to.
FileSpec determines what files are copied.
Overwrite determines how the copy is done. Can be:

"Always" always copies the file 
"IfNewer" copies the file if SourceFile is newer than DestFile
"IfNotExist" copies only if DestFile does not already exist

If MakeDir is true, any empty directories will be created.

Returns: Integer. 
Returns 0 if all the files were copied successfully, otherwise one of these:

1 Invalid SourceDir name
2 Invalid DestDir file name
3 Error reading a Source file
4 Error writing a Dest file
5 Couldn't create directory for Dest files
6 Dest file exists
7 Dest file is newer that Source file
8 No files matched the specified wildcard

Examples: Director:
OK = baXCopy( "c:\data" , "d:\backup" , "*.dat " , "IfNewer" , true )

Authorware:
OK := baXCopy( "c:\\data" , "d:\\backup" , "*.*" , "Always" , false )

Notes: By default, this function will not overwrite an existing file if that file is 
marked as read-only. However, by adding "+"    to the "Always" and 
"IfNewer" options (eg "Always+" or "IfNewer+"), the files will be overwritten
if they are read-only.

The return value will not be 0 if any file is not copied. For example, if you 
specify 
baXCopy( "c:\data" , "d:\backup" , "*.*" , "IfNewer" )
and any of the files in c:\data are newer than the ones in d:\backup, the 
return result will be 7 (Dest file is newer than Source). A result of 0 will be 
returned only if none of the files in c:\data is newer than d:\backup.
The FileSpec argument follows normal DOS wildcard rules. A * means match
any character in the file name. 
So *.* copies all files; *.bmp copies all files with a .bmp extension; T*.* 
copies all files starting with the letter T.
A return value of 6 (Dest file exists) can only be returned when Overwrite is 
"IfNotExist".
A return value of 7 (Dest file is newer than Source file) can only be returned
when Overwrite is "IfNewer". The other return values can be returned for all
Overwrite options.
The "IfNewer" option operates as follows: if both files have internal version 
numbers, then these numbers are used for comparison, otherwise the dates



of the two files are used for comparison.

The 16 bit version can not copy system or hidden files, but the 32 bit 
version can. The new files will be set to archive and not read-only.

See also: baCopyFile
baCopyXFiles

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



CopyFileProgress

Description: baCopyFileProgress copies a file, while displaying a progress dialog

Usage: Result = baCopyFileProgress( SourceFile , DestFile , Overwrite, Title, 
ButtonText, Flags )

Arguments: String, string, string, string, string, integer.
SourceFile is the file to copy.
DestFile is the name to copy it to.
Overwrite determines how the copy is done. Can be:

"Always" always copies the file
"IfNewer" copies the file if SourceFile is newer than DestFile
"IfNotExist" copies only if DestFile does not already exist

Title is the title of the dialog box. 
ButtonText is the text to use in the Cancel button. 
Flags changes the behaviour of the dialog, see notes for details. 

Returns: Integer. 
Returns 0 if the file was copied successfully, otherwise one of these:

1 Invalid Source file name
2 Invalid Dest file name
3 Error reading the Source file
4 Error writing the Dest file
5 Couldn't create directory for Dest file
6 Dest file exists
7 Dest file is newer that Source file
9 User cancelled the copy

Examples: Director:
OK = baCopyFileProgress( "c:\data\student.dat" , "c:\data\backup\
student.dat" , "IfNewer", true, "Backing up files... ", "Cancel", 0 )

Authorware:
OK := baCopyFileProgress( "c:\\data\\student.dat" , "c:\\data\\backup\\
student.dat" , "IfNewer" , true, "Backing up files... ", "Cancel", 0 )

Notes: By default, this function will not overwrite an existing file if that file is 
marked as read-only. However, by adding "+"    to the "Always" and 
"IfNewer" options (eg "Always+" or "IfNewer+"), the files will be overwritten
if they are read-only.

A return value of 6 (Dest file exists) can only be returned when Overwrite is 
"IfNotExist".
A return value of 7 (Dest file is newer than Source file) can only be returned
when Overwrite is "IfNewer". The other return values can be returned for all
Overwrite options.
The "IfNewer" option operates as follows: if both files have internal version 
numbers, then these numbers are used for comparison, otherwise the dates
of the two files are used for comparison.
The DestFile must contain the full name of the file, not just the name of the 
folder it is being copied to.

Notes: Seven Flags are defined: 
CP_NOCANCEL 1 does not show the Cancel button.



CP_NOFILENAME 2 does not display the file names while copying.
CP_STOPONERROR 4 stop copying if an error occurs
CP_NODIALOG 8 does not show the dialog box
CP_CALLBACK 16 enable the copy callback handler
CP_ANIMATE 32 shows system file copying animation
CP_SIZEUPDATE 64 updates the callback handler by size

You can add any of these flags together to customize the dialog box. 

To implement the callback handler, use the CP_CALLBACK flag. Typically you
would also use the CP_NODIALOG flag and implement your own dialog box. 
If you use this flag then you need to add a handler called 
'baCopyProgressUpdate'. This handler needs to be a movie script. 
This handler will have two arguments passed into it - the percentage copied
so far and the current file being copied. The handler will be called whenever
the percentage copied has increased by one, or a new file is being copied. If
you specify the CP_SIZEUPDATE, then your handler will be called whenever 
approximately 64k of data has been copied, rather than by percentage. 

To stop copying, you can return 1 in your handler; return 0 or no return to 
continue copying. An example handler is listed below - the update functions
would be used to update your own progress dialog. 

on baCopyProgressUpdate percentage, filename

updateProgressBar percentage
updateStatus fileName

if keyPressed( " " ) then -- if user presses space bar, stop copying
return 1

end if
end

The callback handler is only available on Director. 

See also: baCopyXFilesProgress
baXCopyProgress
baCopyXFiles
baCopyFile
baXCopy



CopyXFilesProgress

Description: baCopyXFilesProgress copies multiple files, while displaying a progress 
dialog

Usage: Result = baCopyXFilesProgress( SourceDir , DestDir , FileSpec, Overwrite, 
Title, ButtonText, Flags )

Arguments: String, string, string, string, string, string, integer.
SourceDir is the folder to copy from.
DestDir is the folder to copy to.
FileSpec determines what files are copied.
Overwrite determines how the copy is done. Can be:

"Always" always copies the file
"IfNewer" copies the file if SourceFile is newer than DestFile
"IfNotExist" copies only if DestFile does not already exist

Title is the title of the dialog box. 
ButtonText is the text to use in the Cancel button. 
Flags changes the behaviour of the dialog, see notes for details. 

Returns: Integer. 
Returns 0 if the file was copied successfully, otherwise one of these:

1 Invalid Source file name
2 Invalid Dest file name
3 Error reading the Source file
4 Error writing the Dest file
5 Couldn't create directory for Dest file
6 Dest file exists
7 Dest file is newer that Source file
8 No files matched the specified type
9 User cancelled the copy

Examples: Director:
OK = baCopyXFilesProgress( "c:\data" , "d:\backup" , "*.dat", "IfNewer", 
"Backing up files... ", "Cancel", 0 )

Authorware:
OK := baCopyXFilesProgress( "c:\\data" , "d:\\backup" , "*.dat", "IfNewer" , 
"Backing up files... ", "Cancel", 0 )

Notes: By default, this function will not overwrite an existing file if that file is 
marked as read-only. However, by adding "+"    to the "Always" and 
"IfNewer" options (eg "Always+" or "IfNewer+"), the files will be overwritten
if they are read-only.

The return value will not be 0 if any file is not copied. For example, if you 
specify
baCopyXFilesProgress( "c:\data" , "d:\backup" , "*.*" , "IfNewer", ....... )
and any of the files in c:\data are newer than the ones in d:\backup, the 
return result will be 7 (Dest file is newer than Source). A result of 0 will be 
returned only if none of the files in c:\data is newer than d:\backup.

The FileSpec argument follows normal DOS wildcard rules. A * means match
any character in the file name. 
So *.* copies all files; *.bmp copies all files with a .bmp extension; T*.* 



copies all files starting with the letter T.

A return value of 6 (Dest file exists) can only be returned when Overwrite is 
"IfNotExist".
A return value of 7 (Dest file is newer than Source file) can only be returned
when Overwrite is "IfNewer". The other return values can be returned for all
Overwrite options.
The "IfNewer" option operates as follows: if both files have internal version 
numbers, then these numbers are used for comparison, otherwise the dates
of the two files are used for comparison.

Notes: Seven Flags are defined:
CP_NOCANCEL 1 does not show the Cancel button.
CP_NOFILENAME 2 does not display the file names while copying.
CP_STOPONERROR 4 stop copying if an error occurs
CP_NODIALOG 8 does not show the dialog box
CP_CALLBACK 16 enable the copy callback handler
CP_ANIMATE 32 shows system file copying animation
CP_SIZEUPDATE 64 updates the callback handler by size

You can add any of these flags together to customize the dialog box. 

To implement the callback handler, use the CP_CALLBACK flag. Typically you 
would also use the CP_NODIALOG flag and implement your own dialog box. If
you use this flag then you need to add a handler called 
'baCopyProgressUpdate'. This handler needs to be a movie script. 
This handler will have two arguments passed into it - the percentage copied 
so far and the current file being copied. The handler will be called whenever 
the percentage copied has increased by one, or a new file is being copied. If 
you specify the CP_SIZEUPDATE, then your handler will be called whenever 
approximately 64k of data has been copied, rather than by percentage.

To stop copying, you can return 1 in your handler; return 0 or no return to 
continue copying. An example handler is listed below - the update functions 
would be used to update your own progress dialog.

on baCopyProgressUpdate percentage, filename

      updateProgressBar percentage
      updateStatus fileName

            if keyPressed( " " ) then -- if user presses space bar, stop copying
                  return 1

            end if
end

The callback handler is only available on Director.

See also: baXCopyProgress
baCopyFileProgress
baCopyXFiles
baCopyFile
baXCopy





XCopyProgress

Description: baXCopyProgress copies multiple files, including sub-folders, while 
displaying a progress dialog

Usage: Result = baXCopyProgress( SourceDir, DestDir, FileSpec, Overwrite, 
MakeDir, Title, ButtonText, Flags )

Arguments: String, string, string, string, integer, string, string, integer.
SourceDir is the folder to copy from.
DestDir is the folder to copy to.
FileSpec determines what files are copied.
Overwrite determines how the copy is done. Can be:

"Always" always copies the file
"IfNewer" copies the file if SourceFile is newer than DestFile
"IfNotExist" copies only if DestFile does not already exist

If MakeDir is true, any empty directories will be created. 
Title is the title of the dialog box.
ButtonText is the text to use in the Cancel button.
Flags changes the behaviour of the dialog, see notes for details.

Returns: Integer. 
Returns 0 if the file was copied successfully, otherwise one of these:

1 Invalid Source file name
2 Invalid Dest file name
3 Error reading the Source file
4 Error writing the Dest file
5 Couldn't create directory for Dest file
6 Dest file exists
7 Dest file is newer that Source file
8 No files matched the specified type
9 User cancelled the copy

Examples: Director:
OK = baXCopyProgress( "c:\data" , "d:\backup" , "*.dat", "IfNewer", true, 
"Backing up files... ", "Cancel", 0 )

Authorware:
OK := baXCopyProgress( "c:\\data" , "d:\\backup" , "*.dat", "IfNewer" , true, 
"Backing up files... ", "Cancel", 0 )

Notes: By default, this function will not overwrite an existing file if that file is 
marked as read-only. However, by adding "+"    to the "Always" and 
"IfNewer" options (eg "Always+" or "IfNewer+"), the files will be overwritten
if they are read-only.

The return value will not be 0 if any file is not copied. For example, if you 
specify
baXCopyProgress( "c:\data" , "d:\backup" , "*.*" , "IfNewer", ....... )
and any of the files in c:\data are newer than the ones in d:\backup, the 
return result will be 7 (Dest file is newer than Source). A result of 0 will be 
returned only if none of the files in c:\data is newer than d:\backup.

The FileSpec argument follows normal DOS wildcard rules. A * means match
any character in the file name. 



So *.* copies all files; *.bmp copies all files with a .bmp extension; T*.* 
copies all files starting with the letter T.

A return value of 6 (Dest file exists) can only be returned when Overwrite is 
"IfNotExist".
A return value of 7 (Dest file is newer than Source file) can only be returned
when Overwrite is "IfNewer". The other return values can be returned for all
Overwrite options.
The "IfNewer" option operates as follows: if both files have internal version 
numbers, then these numbers are used for comparison, otherwise the dates
of the two files are used for comparison.

Notes: Seven Flags are defined:
CP_NOCANCEL 1 does not show the Cancel button.
CP_NOFILENAME 2 does not display the file names while copying.
CP_STOPONERROR 4 stop copying if an error occurs
CP_NODIALOG 8 does not show the dialog box
CP_CALLBACK 16 enable the copy callback handler
CP_ANIMATE 32 shows system file copying animation
CP_SIZEUPDATE 64 updates the callback handler by size

You can add any of these flags together to customize the dialog box. 

To implement the callback handler, use the CP_CALLBACK flag. Typically you 
would also use the CP_NODIALOG flag and implement your own dialog box. If
you use this flag then you need to add a handler called 
'baCopyProgressUpdate'. This handler needs to be a movie script. 
This handler will have two arguments passed into it - the percentage copied 
so far and the current file being copied. The handler will be called whenever 
the percentage copied has increased by one, or a new file is being copied. If 
you specify the CP_SIZEUPDATE, then your handler will be called whenever 
approximately 64k of data has been copied, rather than by percentage.

To stop copying, you can return 1 in your handler; return 0 or no return to 
continue copying. An example handler is listed below - the update functions 
would be used to update your own progress dialog.

on baCopyProgressUpdate percentage, filename

      updateProgressBar percentage
      updateStatus fileName

            if keyPressed( " " ) then -- if user presses space bar, stop copying
                  return 1

            end if
end

The callback handler is only available on Director.

See also: baCopyXFilesProgress
baCopyFileProgress
baCopyXFiles
baCopyFile
baXCopy





FileVersion
Description: baFileVersion returns a string containing the version of a file.

Usage: Result = baFileVersion( FileName )

Arguments: String.
FileName is the name of the file to obtain version information of.

Returns: String.
Returns the version of the file. If the file doesn't contain version information
or doesn't exist, then an empty string is returned.

Examples: Director:
AcroVer = baFileVersion( "c:\acroread\acroread.exe" )

Authorware:
AcroVer := baFileVersion( "c:\\acroread\\acroread.exe" )

Notes: The version of a 32 bit file (dll, exe, etc) is not available to a 16 bit exe 
under Windows NT.

See also: baFileDate
baFileAge

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FileList
Description: baFileList returns a list of files in a folder.

Usage: Result = baFileList( Folder, FileSpec )

Arguments: String, string.
Folder is the name of the folder to list.
FileSpec is the pattern of files to match.

Returns: List (Xtra) or String (UCD).
Returns the list of matching files. If Folder doesn't exist, then an empty 
list/string is returned.

Examples: Director:
Files = baFileList( "c:\windows", "*.*" )

Authorware:
Files := baFileList( "c:\\temp", "*.bmp" )

See also: baFolderList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FolderList
Description: baFolderList returns a list of folders in a folder.

Usage: Result = baFolderList( Folder )

Arguments: String.
Folder is the name of the folder to list.

Returns: List (Xtra) or String (UCD).
Returns the list of folders. If Folder doesn't exist, then an empty list/string is
returned.

Examples: Director:
Folders = baFolderList( "c:\windows" )

Authorware:
Files := baFolderList( "c:\\temp" )

See also: baFileList

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



GetFilename
Description: baGetFilename displays a file dialog box and returns the filename selected.

Usage: Result = baGetFilename( Operation, StartDir, Filename, Filter, Flags, 
Instruction, NoFolders, X, Y )

Arguments: String, string, string, string, integer, string, integer, integer, integer.
Operation is the type of dialog to show. Can be "open" or "save".
StartDir is the initial directory. Use "" for the current directory.
Filename is the initial file name to display.
Filter is the type of files to display. Use "" to show all files.
Flags modifies the behaviour of the dialog.
Instruction is the instruction to display to the user.
If NoFolders is true, the folder selection controls will not be shown.
X is horizontal position of the dialog.
Y is the vertical position of the dialog.

Returns: String.
Returns the file name selected, or "" if the user cancelled.

Examples: Director:
filename = baGetFilename( "save", "c:\temp", "newfile.txt", "Text files|
*.txt", 0, "Save new file", false, 100, 100 )

Authorware:
file := baGetFilename( "open", "c:\\temp", "", "", 0, "Select data file to 
open", true, -1, 0 )

Notes: The filter argument consists of a series of strings separated by "|" 
characters. The strings are divided into pairs, the first half of a pair is the 
description that appears in the drop down box, the second half is the 
wildcard for the files. Separate multiple wildcards with semi-colons.
"Text files|*.txt"    -- shows only text files
"Text files|*.txt"|All files|*.*"    --    allows the user to display either text files 
or all files
"Images|*.bmp;*.tif;*.jpg"    -- shows different image files

Setting the NoFolders option to true will mean that the user will not be able 
to change the initial directory, and folders will not be shown.

The X and Y values are the number of pixels from the top left corner of the 
screen. Set X to -1 to position the dialog in the center of the calling 
Director/Authorware window. Set X to -2 to position the dialog in the center 
of the screen.

The flags argument allows you to change the way the dialog box looks and 
behaves. It can be the combination of any of these values.

1 OFN_READONLY 
Causes the Read Only check box to be checked initially when the dialog 
box is created.

2 OFN_OVERWRITEPROMPT
Causes the Save As dialog box to generate a message box if the selected 
file already exists. The user must confirm whether to overwrite the file.

4 OFN_HIDEREADONLY



Hides the Read Only check box.
8 OFN_NOCHANGEDIR

Restores the current directory to its original value if the user changed the 
directory while selecting a file.

32 OFN_ADDEXTENSION
If the user enters a name without an extension, the first extension listed in 
the Filter argument will be added to the end of the returned filename.

256 OFN_RETURNASLIST
If OFN_ALLOWMULTISELECT is specified returns the file names as a list. 

512 OFN_ALLOWMULTISELECT
Specifies that the File Name list box allows multiple selections. 

2048 OFN_PATHMUSTEXIST
Specifies that the user can type only valid paths and filenames. If this flag 
is used and the user types an invalid path and filename in the File Name 
entry field, the dialog box function displays a warning in a message box.

4096 OFN_FILEMUSTEXIST
Specifies that the user can type only names of existing files in the File 
Name entry field. If this flag is specified and the user enters an invalid 
name, the dialog box procedure displays a warning in a message box.

8192 OFN_CREATEPROMPT
Specifies that the dialog box function should ask whether the user wants to
create a file that does not currently exist.

32768 OFN_NOREADONLYRETURN
Specifies that the returned file does not have the Read Only check box 
checked and is not in a write-protected directory.

131072 OFN_NONETWORKBUTTON
Hides and disables the Network button.

262144 OFN_NOLONGNAMES
Specifies that long filenames are not displayed in the File Name list box. 
This value is ignored if OFN_EXPLORER is set.

These values are available in 32 bit only
524288 OFN_EXPLORER

Creates an Open or Save As dialog box that uses user-interface features 
similar to the Windows Explorer.

1048576 OFN_NODEREFERENCELINKS
Directs the dialog box to return the path and filename of the selected 
shortcut (.LNK) file. If this value is not given, the dialog box returns the 
path and filename of the file referenced by the shortcut.

2097152 OFN_LONGNAMES
Causes the Open or Save As dialog box to display long filenames. If this 
flag is not specified, the dialog box displays filenames in 8.3 format. This 
value is ignored if OFN_EXPLORER is set.

4194304 OFN_SHOWPLACESBAR
Shows the Places bar. Only available on ME/2000/XP.    Has no effect unless 
OFN_EXPLORER is also specified. Note that if this flag is specified then the 
Position arguments are ignored - Windows will place the dialog in the last 
place left by the user.

To use these values, add the appropriate values together eg 
OFN_CREATEPROMPT + OFN_HIDEREADONLY + OFN_NONETWORKBUTTON

If OFN_ALLOWMULTISELECT is specified and OFN_RETURNASLIST is not 
specified, and the user selects more than one file, the return will be a series
of strings, separated by returns. The first line will be the directory selected, 
the remaining lines will be the selected filenames. In Director, use "the line 
of" function to retrieve each line. In Authorware, use the "GetLine" function.
If OFN_RETURNASLIST is specified then the return will be a list with each 
filename as a separate entry. Each entry will be the full filename, including 
the path.



The OFN_EXPLORER flag can not be used with the NoFolders option.

To make it easier to enter the constants, here are some scripts:

Director:
set OFN_READONLY = 1
set OFN_OVERWRITEPROMPT = 2
set OFN_HIDEREADONLY = 4
set OFN_NOCHANGEDIR = 8
set OFN_ALLOWMULTISELECT = 512
set OFN_PATHMUSTEXIST = 2048
set OFN_FILEMUSTEXIST = 4096
set OFN_CREATEPROMPT = 8192
set OFN_NOREADONLYRETURN = 32768
set OFN_NONETWORKBUTTON =    131072
set OFN_NOLONGNAMES =    262144
-- 32 bit only
set OFN_EXPLORER =    524288
set OFN_NODEREFERENCELINKS =    1048576
set OFN_LONGNAMES    =    2097152
set OFN_SHOWPLACESBAR = 4194304

Authorware:
OFN_READONLY := 1
OFN_OVERWRITEPROMPT := 2
OFN_HIDEREADONLY := 4
OFN_NOCHANGEDIR := 8
OFN_ALLOWMULTISELECT := 512
OFN_PATHMUSTEXIST := 2048
OFN_FILEMUSTEXIST := 4096
OFN_CREATEPROMPT := 8192
OFN_NOREADONLYRETURN := 32768
OFN_NONETWORKBUTTON :=    131072
OFN_NOLONGNAMES :=    262144
-- 32 bit only
OFN_EXPLORER :=    524288
OFN_NODEREFERENCELINKS :=    1048576
OFN_LONGNAMES    :=    2097152
OFN_SHOWPLACESBAR := 4194304

See also: baGetFolder
baGetDisk

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



GetFolder
Description: baGetFolder displays a directory dialog box and returns the folder selected.

Usage: Result = baGetFolder( StartDir, Instruction, Flags, Caption, X, Y )

Arguments: String, string, integer, string, integer, integer.
StartDir is the initial directory. Use "" for the current directory.
Instruction is the instruction to display to the user.
Flags modifies the behaviour of the dialog.
Caption is the caption of the dialog.
X is the horizontal position of the dialog.
Y is the vertical position of the dialog.

Returns: String.
Returns the folder selected, or "" if the user cancelled.

Examples: Director:
folder = baGetFolder( "c:\temp", "Please select a folder to install into:", 1, 
"Select a folder", -1, 0 )

Authorware:
folder := baGetFolder( "c:\\temp", "Select    installation directory", 0, "", 200,
200 )

Notes: The flags argument allows you to change the way the dialog box looks and 
behaves. The following flags are defined.

1 ODN_EXPLORER
Makes the dialog box a 32 bit Explorer style. If this style is not available, for 
example if running under Windows 3.1, then a 16 bit style dialog will be shown. 
The 16 bit Xtra/UCD ignores this style - it will always show the 16 bit style dialog.

2 ODN_NEWBUTTON
Displays a ‘New’ button to allow the user to create a new folder. If used with 
ODN_EXPLORER, the New Folder button will only be shown on Win ME/2000/XP.

The Caption argument is only used if a 32 bit dialog box is used. If it is an 
empty string, then the default "Browse for Folder" will be displayed.

The X and Y values are the number of pixels from the top left corner of the 
screen. Set X to -1 to position the dialog in the center of the calling 
Director/Authorware window. Set X to -2 to position the dialog in the center 
of the screen.

See also: baGetFilename
baGetDisk

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  



Contents  



GetDisk
Description: baGetDisk displays a directory dialog box and returns the folder selected.

Usage: Result = baGetDisk( Disk, Instruction, Flags, X, Y )

Arguments: String, string, integer, integer, integer.
Disk is the initial disk to be selected in the dialog.
Instruction is the instruction to display to the user.
Flags modifies the behaviour of the dialog.
X and Y are the position of the dialog.

Returns: String. 
Returns the name of the disk selected. 

Examples: Director: 
disk = baGetDisk( "c:\", "Select a disk", 0, 50, 50 ) 

Authorware: 
disk := baGetDisk( "c:\\", "Select a disk", 0, 50, 50 ) 

Notes: No flags are currently defined. 

The X and Y arguments specify the position of the dialog in screen pixels. 
Set X to -2 to center the dialog on the screen. Centering the dialog on the 
stage is not implemented. Using -3 will position the dialog at the position    
it was last displayed. 

See also: baGetFolder
baGetFilename

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FolderSize
Description: baFolderSize returns the size of a folder.

Usage: Result = baFolderSize( Folder, FileSpec, SubFolders ) 

Arguments: String, string, integer. 
Folder is the folder to get the size of. 
FileSpec determines what files are included. 
If SubFolders is true, the size of subfolders is also included. 

Examples: Director: 
size = baFolderSize( "c:\Data", "*.*", 1 ) 

Authorware: 
folder := baFolderSize( "c:\\Data", "*.*", 1 ) 

Notes: The FileSpec is a DOS wildcard, eg "*.bmp". Only one type can be specified. 
Use "*.*" to match all files. The size returned will be in kilobytes (1k = 1000 
bytes).

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



MoveOnReboot
Description: baMoveOnReboot moves a file on system reboot.

Usage: Result = baMoveOnReboot( SourceFile, DestFile ) 

Arguments: String, string. 
SourceFile is the file to move. 
DestFile is the new name of the file. 

Returns: Integer. 
The function returns 1 if successful, otherwise 0. Note that the function can not check 
if the file will actually be moved/deleted, only that Windows will attempt to do it when 
the system next reboots.

Examples: Director: 
OK = baMoveOnReboot( "c:\Data\student.log", "c:\Backup\student.log" ) 

Authorware: 
OK := baMoveOnReboot( "c:\\Data\\student.log", "c:\\Backup\\student.log" ) 

Notes: This function allows you to move or delete a file that is currently in use by Windows 
and can't be moved or deleted until Windows restarts. 
Passing in an empty string as the DestFile will mean that the file will be deleted on 
reboot. 
This function will work on folders as well as files.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FindFirstFile
Description: baFindFirstFile searches for the first file matching a specification.

Usage: Result = baFindFirstFile( StartDir, FileSpec )

Arguments: String, string.
StartDir is the directory to start searching in.
FileSpec is the pattern to search for.

Returns: String
Returns the full path to the first file found

Examples: Director:
file = baFindFirstFile( "c:\", "netscape.exe" )    -- searches drive c for 
netscape.exe

Authorware:
file := baFindFirstFile( "c:\\windows", "*.ttf" )    -- searches for fonts

Notes: All sub-directories of the starting directory will be included in the search. 
This function can be used with baFindNextFile to find all files. When you are 
finished finding all the files you are interested in, you must call baFindClose 
to free memory allocated by baFindFirstFile.

Here are examples of searching the C drive for all copies of "netscape.exe"

Director:

fileList = []  -- a list to contain the found files
    file = baFindFirstFile( "c:\", "netscape.exe" )

-- loop through all found files and add to the list
repeat while file <> ""
      append( fileList, file )
      file = baFindNextFile()
end repeat
baFindClose()

    

Authorware Xtra:

fileList := []    -- a list to contain the found files
file := baFindFirstFile( "c:\\", "netscape.exe" )
repeat while file <> ""
      AddLinear( fileList, file )
      file := baFindNextFile()
end repeat
baFindClose()

Authorware UCD:

fileList := ""
file := baFindFirstFile( "c:\\", "netscape.exe" )
repeat while file <> ""



      -- add names to fileList with returns between file names
      if fileList = "" then
              fileList := file
      else
            fileList := fileList ^ Return ^ file
      end if
      -- get next file
      file := baFindNextFile()
end repeat
baFindClose()

See also: baFindNextFile
baFindClose

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FindNextFile
Description: baFindNextFile continues a search started with baFindFirstFile.

Usage: Result = baFindNextFile( )

Arguments: Void

Returns: String
Returns the full path to the next file found

Examples: Director:
file = baFindNextFile( )

Authorware:
file := baFindNextFile( )

Notes: You must call baFindFirstFile before calling this function. baFindFirstFile sets 
up the search criteria, and allocates the required memory. When you are 
finished finding all the files you are interested in, you should call 
baFindClose to free memory allocated by baFindFirstFile.

See also: baFindFirstFile
baFindClose

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FindClose
Description: baFindClose finishes a search started with baFindFirstFile.

Usage: baFindClose( )

Arguments: Void

Returns: Void

Examples: Director:
baFindClose( )

Authorware:
baFindClose( )

Notes: This function frees memory allocated by baFindFirstFile. After calling this 
function, you must call baFindFirstFile to start a new search.

See also: baFindFirstFile
baFindNextFile

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



EncryptFile
Description: baEncryptFile encrypts/decrypts a file.

Usage: Result = baEncryptFile( FileName , Key )

Arguments: String, string.
FileName is the file to encrypt/decrypt.
Key is the string to use as the encryption key.

Returns: Integer.
Returns 1 if successful, else 0.

Examples: Director:
OK = baEncryptFile( "d:\results.dat" , "This is my key" )

Authorware:
OK := baEncryptFile( "d:\results.dat" , "This is my key" )

Notes: This function uses an xor routine to encrypt a file. To decrypt the file, run 
the function again using the same key. This will return it to it's original 
state.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



FindDrive
Description: baFindDrive searches all drives looking for a specified file.

Usage: Result = baFindDrive( StartDrive, FileName )

Arguments: String, string.
StartDrive is the letter of the drive to start searching on.
FileName is the name of the file to search for.

Returns: String.
Returns the letter of the Drive where the file was found. If the file is not 
found, returns an empty string.

Examples: Director:
Drive = baFindDrive( "c", "myfile.id" )

Authorware:
Drive := baFindDrive( "c", "myfile.id" )

Notes: The StartDrive option can be used to avoid searching floppy disks. 
The FileName can consist of a path name as well as the filename. For 
example, FindDrive( "c", "data\avi\cn232.avi" ) will search for "c:\data\avi\
cn232.avi", "d:\data\avi\cn232.avi", "e:\data\avi\cn232.avi", etc. If a path is 
not included, then the root directory of the drive will be used in the search. 
The search is done in alphabetical order.
This function can be used to search for content that is stored separately 
from the main packaged file eg on a CD or network drive.

See also: baDiskInfo

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



OpenFile
Description: baOpenFile opens a document, using the program that the file is associated

with.

Usage: Result = baOpenFile( FileName , State )

Arguments: String, string.
FileName is the name of the file to open. The full path name should be 
supplied.
State is the window state to open the file with.
Can be one of these:

"Normal" shows in its usual state.
"Hidden" is not visible.
"Maximised" shows as a maximised window.
"Minimised" shows as an minimised icon.

Returns: Integer.
Returns an error code. If the return is less than 32 than an error occurred. 
Possible errors include:

0 System was out of memory. 
2 File was not found. 
3 Path was not found. 
5 Sharing or network-protection error. 
6 Library required separate data segments for each task. 
8 There was insufficient memory to start the application. 
10 Windows version was incorrect. 
11 Executable file was invalid. Either it was not a Windows application or there was

an error in the .EXE image. 
12 Application was designed for a different operating system. 
13 Application was designed for MS-DOS 4.0. 
14 Type of executable file was unknown. 
15 Attempt was made to load a real-mode application (developed for an earlier 

version of Windows). 
16 Attempt was made to load a second instance of an executable file containing 

multiple data segments that were not marked read-only. 
19 Attempt was made to load a compressed executable file. The file must be 

decompressed before it can be loaded. 
20 Dynamic-link library (DLL) file was invalid. One of the DLLs required to run this 

application was corrupt.
21 Application requires 32-bit extensions.
26 A sharing violation occurred.
27 The filename association is incomplete or invalid.
29 The DDE transaction failed.
30 The DDE transaction could not be completed because other DDE transactions 

were being processed.
31 There is no application associated with the given filename

Examples: Director:
OK = baOpenFile( the pathName & "test.txt" , "maximised" )

Authorware:
OK := baOpenFile( FileLocation ^ "test.txt" , "maximised" )

See also: baPrintFile
baShell



Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



OpenURL
Description: baOpenURL opens an internet document, using the default browser.

Usage: Result = baOpenURL( URL , State )

Arguments: String, string.
URL is the name of the document to open.
State is the window state to open the browser with.
Can be one of these:

"Normal" shows in its usual state.
"Hidden" is not visible.
"Maximised" shows as a maximised window.
"Minimised" shows as an minimised icon.

Returns: Integer.
Returns 1 if successful, else 0. Success means that there is a browser 
associated with .htm files, and it can be started. If opening a local HTML file
under Windows 95 the function will fail if the file does not exist; under 
Windows 3.1, the browser will open with an error message, but the function 
will return 1.

Examples: Director:
OK = baOpenURL( "http://www.macromedia.com" , "maximised" )

Authorware:
OK := baOpenURL( "http://www.macromedia.com" , "maximised" )

Notes: The URL can be any valid internet URL or a local HTML file. 
This function has been written for use with Netscape Navigator and 
Microsoft Internet Explorer, but it may work with other browsers.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



PrintFile
Description: baPrintFile prints a document, using the program that the file is associated 

with.

Usage: Result = baPrintFile( FileName )

Arguments: String.
FileName is the name of the file to print. The full path name should be 
supplied.

Returns: Integer.
Returns an error code. If the return is less than 32 than an error occurred. 
Possible errors include:

0 System was out of memory. 
2 File was not found. 
3 Path was not found. 
5 Sharing or network-protection error. 
6 Library required separate data segments for each task. 
8 There was insufficient memory to start the application. 
10 Windows version was incorrect. 
11 Executable file was invalid. Either it was not a Windows application or there was

an error in the .EXE image. 
12 Application was designed for a different operating system. 
13 Application was designed for MS-DOS 4.0. 
14 Type of executable file was unknown. 
15 Attempt was made to load a real-mode application (developed for an earlier 

version of Windows). 
16 Attempt was made to load a second instance of an executable file containing 

multiple data segments that were not marked read-only. 
19 Attempt was made to load a compressed executable file. The file must be 

decompressed before it can be loaded. 
20 Dynamic-link library (DLL) file was invalid. One of the DLLs required to run this 

application was corrupt.
21 Application requires 32-bit extensions.
26 A sharing violation occurred.
27 The filename association is incomplete or invalid.
29 The DDE transaction failed.
30 The DDE transaction could not be completed because other DDE transactions 

were being processed.
31 There is no application associated with the given filename extension.

Examples: Director:
OK = baPrintFile( the pathName & "test.txt" )

Authorware:
OK := baPrintFile( FileLocation ^ "test.txt" )

See also: baOpenFile
baShell

Information functions   System functions  
File functions   Window functions  



Alphabetical function list  

Contents  



ShortFileName
Description: baShortFileName returns the DOS 8.3 name of a Windows 95 long filename.

Usage: Result = baShortFileName(LongFileName )

Arguments: String.
LongFileName is the name of the file. You must supply the full path name to
the file.

Returns: String.
Returns the file name in DOS format. If the file doesn't exist, then the return
will be an empty string. 

Examples: Director:
ShortName = baShortFileName( "c:\Program Files\Accessories\Wordpad.exe"
)

Authorware:
ShortName := baShortFileName( "c:\\Program Files\\Accessories\\
Wordpad.exe" )

Notes: In 16 bit, this function works in Windows 95; but under Windows 3.x or NT 
the function will return the FileName exactly the same as it was.    

Under 32 bit, the function will work under 95 or NT.

See also: baLongFileName

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



LongFileName
Description: baLongFileName returns the long version of a short filename.

Usage: Result = baLongFileName( ShortFileName )

Arguments: String.
ShortFileName is the name of the file. You must supply the full path name to
the file.

Returns: String.
Returns the file name in long format. If the file doesn't exist, then the return
will be an empty string. 

Examples: Director:
LongName = baLongFileName( "c:\Progra~1\Access~1\wordpad.exe " )

Authorware:
LongName := baLongFileName("c:\Progra~1\Access~1\wordpad.exe " )

See also: baShortFileName

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



TempFileName
Description: baTempFileName returns a temporary file name that is guaranteed not to 

exist.

Usage: Result = baTempFileName( Prefix )

Arguments: String.
Prefix is a string of up to 3 characters that is used to generate the filename.

Returns: String.
Returns the file name, including the path.

Examples: Director:
FileName = TempFileName( "gaz" )

Authorware:
FileName := TempFileName( "gaz" )

Notes: Under 16 bit, the file name will consist of the path name, a tilde "~" 
followed by the prefix, then a four digit number, with a ".tmp" extension; eg
"c:\temp\~gaz1257.tmp".    The file will not be created.

Under 32 bit, the file name will consist of the path name, followed by the 
prefix, then a number, with a ".tmp" extension; eg "c:\temp\gaz12453.tmp" 
An empty file with that name will be created.

The baTempFileName function gets the temporary file path as follows::

16 bit: 1. The path specified by the TEMP environment variable
2. Root directory of the first hard disk, if TEMP is not defined.

32 bit: 1. The path specified by the TMP environment variable. 
2. The path specified by the TEMP environment variable, if TMP is 

not defined. 
3. The current directory, if both TMP and TEMP are not defined.

Files created using file names returned by this function are not 
automatically deleted when Windows shuts down.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



MakeShortcut
Description: baMakeShortcut creates a Windows 95/NT shortcut.

Usage: Result = baMakeShortcut( FileName , Path , Title )

Arguments: String, string, string.
FileName is the file that the shortcut will point to.
Path is the folder that the shortcut will be created in.
Title is the name of the shortcut.

Returns: Integer.
Returns 1 if successful, else 0.

Examples: Director:
OK = baMakeShortcut( "d:\mworld.exe" , "c:\windows\desktop" , 
"Multimedia World" )

Authorware:
OK := baMakeShortcut( "d:\\mworld.exe" , "c:\\windows\\desktop" , 
"Multimedia World" )

Notes: This function is only available in the 32 bit version running under Windows 
95 or NT 4. If used in 16 bit or under earlier versions of NT, it will do nothing
and return 0.

See also: baMakeShortcutEx
baResolveShortcut

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



MakeShortcutEx
Description: baMakeShortcutEx creates a Windows 95/NT shortcut.

Usage: Result = baMakeShortcutEx( FileName, Path, Title, Args, WorkDir, Icon, 
IconNumber, Hotkey, State )

Arguments: String, string, string, string, string, string, integer, integer, string.
Filename is the name of the file the shortcut will point to.
Path is the folder to create the shortcut in.
Title is the name of the shortcut.
Args is any command line arguments to use.
WorkDir is the working directory to set.
Icon is the name of the icon file.
IconNumber is the number of the icon in Icon to use.
Hokey is the virtual key code of the hotkey to assign to the shortcut.
State is the state to start the program in. Can be "normal", "min", "max"

Returns: Integer.
Returns 1 if successful, else 0.

Examples: Director:
ok = baMakeShortcutEx( "c:\windows\notepad.exe", "c:\temp", "My 
Notepad", "", "c:\windows", "c:\windows\moricons.dll", 12, 65, "normal" )

Authorware:
ok := baMakeShortcutEx( "c:\\window\\notepad.exe", 
baSysFolder( "desktop" ), "My Document", docpath ^ "theFile.txt", "", "", 0, 
65, "max" )

Notes: This function is only available in the 32 bit version running under Windows 
95 or NT 4. If used in 16 bit or under earlier versions of NT, it will do nothing
and return 0.
This function is an extended version of baMakeShortcut. Only the first three 
arguments are required - if any of the others are an empty string or 0, they 
will be ignored.

The Icon parameter can be either an .ico, .exe or .dll file. If the file is a .ico, 
then the IconNumber parameter is ignored. If it is a .exe or .dll file, then the
IconNumber is the number of the icon in that file to use. If the Icon is an 
empty string (""), then the first icon in the Command .exe file will be used.

The Hotkey is a number that represents the virtual key code to use as the 
hotkey. The actual hotkey will be Ctrl + Alt + the key. eg a value of 65 will 
produce a hotkey of Ctrl+Alt+A. If the value is negative then Shift will also 
be used. eg -66 will produce Ctrl+Alt+Shift+B. A list of Virtual Key Codes is 
supplied.

 

See also: baMakeShortcut
baResolveShortcut

Information functions   System functions  



File functions   Window functions  

Alphabetical function list  

Contents  



ResolveShortcut
Description: baResolveShortcut returns the file a Window 95/NT shortcut. points to.

Usage: Result = baResolveShortcut( Shortcut )

Arguments: String.
Shortcut is the name of the shortcut.

Returns: String.
Returns the file name, or an empty string if the shortcut doesn't exist or 
isn't a shortcut.

Examples: Director:
filename = baResolveShortcut( "c:\temp\My Shortcut" )

Authorware:
__ filename := baResolveShortcut( "c:\\temp\\My Shortcut" )

Notes: This function is only available in the 32 bit version running under Windows 
95 or NT 4. If used in 16 bit or under earlier versions of NT, it will do nothing
and return an empty string.
The file extension for shortcuts is .lnk, which Windows does not display. If 
does not matter whether or not you include this extension in your shortcut 
name.

See also: baMakeShortcut
baMakeShortcutEx

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



Window functions

WindowInfo   returns info (state, size, position, title, class) of a window
FindWindow   finds a window with given title or class
WindowList   returns a list of all windows with given title or class
ChildWindowList   returns a list a window's child windows
ActiveWindow   returns the active window
CloseWindow   closes a window
CloseApp   closes the application owning a window
SetWindowState   minimises, maximises, hides a window
ActivateWindow   activates the specified window
SetWindowTitle   set the caption of a window
MoveWindow   moves/resizes a window
WindowToFront   brings a window to the front of other windows
WindowToBack   sends a    window to the back of other windows
WindowDepth   gets the z-order depth of a window
SetWindowDepth   sets the z-order depth of a window
WaitForWindow   waits until a specified window is in a specified state
WaitTillActive   waits until a specified window becomes the active one
NextActiveWindow   returns the next window to become active
WindowExists   checks that a window handle is valid
GetWindow   returns a window related to another window
SendKeys   sends simulated key presses to the active window
SendMsg   sends a windows message to a window
AddSysItems   adds System menu, min and max boxes
RemoveSysItems   removes System menu, min and max boxes
ClipWindow   removes edges from window
SetParent   makes a window a child of another window
WinHandle   returns the main Director or Authorware presentation window
StageHandle   returns the Director stage window
Aw2Window   returns the Authorware presentation window

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



WindowInfo
Description: baWindowInfo returns information about a window.

Usage: Result = baWindowInfo( WindowHandle , InfoType )

Arguments: Integer, string
WindowHandle is the handle of the window.
InfoType is the type of information required. Can be one of the following:

"title" the caption of the window
"class" the class name of the window
"state" the present state of the window. Return can be:

 "hidden"  the window is hidden
 "min"  minimised
 "max"  maximised
 "normal"  normal state

"text" the window's text
"left" the left edge of the window in pixels
"right" the right edge
"top" the top edge of the window in pixels
"bottom" the bottom edge
"height" the height of the window
"width" the width of the window
"rel left" the left edge of the window in relation to it's parent
"rel top" the top edge of the window in relation to it's parent
"client height" the height of the client area of the window
"client width" the width of the client area of the window

Returns: String.
Returns the information requested, or "Invalid" if the window doesn't exist..

Examples: Director:
State = baWindowInfo( Window, "state" )

Authorware:
State := baWindowInfo( Window, "state" )

Notes: The "text" option can be used to retrieve the text in an edit control window.

When using the "rel left" and "rel top" options, if the window is a child of 
another window, then the values returned will be relative to the parent 
window. If the window does not have a parent window, then the returns will 
be relative to the screen.

See also: baSetWindowTitle
baMoveWindow
baSetWindowState

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  



Contents  



FindWindow
Description: baFindWindow returns the handle of a window. This handle can then be 

used in other window management functions.

Usage: Result = baFindWindow( Class, Title )

Arguments: String, string.
Class is the class name of the window.
Title is the text in the window's caption.
The function can use either or both arguments. If one of the arguments is 
blank, then only the other argument will be used in searching for the 
window.

Returns: Integer.
Returns the window handle. If the window isn't found, then returns 0.

Examples: Director:
WinHandle = baFindWindow( "" , "Calculator" )

Authorware:
WinHandle := baFindWindow( "" , "Calculator" )

Notes: A window handle is an number that Windows uses to identify windows. 
Every window has a unique handle. You can use this handle to manipulate 
the window; bring it to the front, close it, etc. 
Every window also has a class name. This is assigned by the programmer, 
and can be used to find a specific window. For example, the Class window 
for the main MS Word window is "OpusApp". To find the handle for the Word 
window, you could use FindWindow( "OpusApp", "" ).
If you know the text in the window's caption, you can use this to find the 
window. For example, FindWindow( "" , "Notepad - mydoc.txt" ).

See also: baWindowList
baGetWindow

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



WindowList
Description: baWindowList returns a list of the handles of open windows. These handles 

can then be used in other window management functions.

Usage: Result = baWindowList( Class , Caption , MatchCaption )

Arguments: String, string, integer.
Class is the Class name of the windows to find.
Caption is the Caption of the windows to find.
If MatchCaption is true, then Caption must match the window caption 
exactly (apart from case). If it is false, then any window which contains 
Caption will be returned. If Caption is an empty string, then MatchCaption is
ignored.
The function can use either or both Class and Caption arguments. If one of 
the arguments is empty, then only the other argument will be used in 
searching for the windows.

Returns: List (Xtra) or String (UCD).
Returns a list or string of all matching window handles.

Examples: Director:
WndList = baWindowList( "" , "Netscape" , false )    -- return list of all 
windows with a caption containing "Netscape"

Authorware:
WndList := baWindowList( "Notepad" , "" , false )    -- return list of all 
Notepad windows

Notes: The return for the UCD version is a string with each window handle on a 
separate line. You can use the Authorware GetLine function to retrieve each
window handle.
The windows will be listed in front-to-back order - the first window in the list
will be the one at the front, while the last one in the list will be behind all 
other windows in the list.

See also: baFindWindow
baChildWindowList
baGetWindow

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



ChildWindowList
Description: baChildWindowList returns a list of a window's child windows.

Usage: Result = baChildWindowList( ParentWnd, Class, Caption, MatchCaption )

Arguments: Integer, string, string, integer.
ParentWnd is the window to get the children of.
Class is the class of child windows to include.
Caption is the window title of child windows to include.
If MatchCaption is true, then Caption must match the window caption 
exactly (apart from case). If it is false, then any window which contains 
Caption will be returned. If Caption is an empty string, then MatchCaption is
ignored.
The function can use either or both Class and Caption arguments. If one of 
the arguments is empty, then only the other argument will be used in 
searching for the windows.

Returns: List (Xtra) or String (UCD).
Returns a list or string of all found window handles.

Examples: Director:
wndList = baChildWindowList( 1234, "", "", 0 ) -- return list of all child 
windows of window 1234

Authorware:
wndList := baChildWindowList( 1234, "Edit", "", 0 ) -- return list of all edit 
controls of window 1234

Notes: The return for the UCD version is a string with each window handle on a 
separate line. You can use the Authorware GetLine function to retrieve each
window handle.
This function will return all child windows of the parent window and all its' 
children.

See also: baFindWindow
baWindowList
baGetWindow

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



ActiveWindow
Description: baActiveWindow returns the handle of the currently active window.

Usage: Result = baActiveWindow()

Arguments: Void.

Returns: Integer.
Returns the handle of the active window.

Examples: Director:
WinHandle = baActiveWindow()

Authorware:
WinHandle := baActiveWindow()

Notes: Under some conditions, this function can return 0. This would typically 
happen during the time an application starts up - the app may have control,
but not yet opened its main window. Do not use a loop such as this:

wnd = 0
baRunProgram( "other.exe" , "normal" , false )
repeat while wnd <> baWinHandle()

wnd = baActiveWindow()    -- ActiveWindow could return 0
end repeat

In the case above, it is possible that wnd will equal 0, not the window 
handle of the new application. A better way to achieve this is to use the 
baNextActiveWindow function.

See also: baNextActiveWindow
baWaitForWindow

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



CloseWindow
Description: baCloseWindow closes the specified window.

Usage: Result = baCloseWindow( WinHandle )

Arguments: Integer.
WinHandle is the handle of the window to close.

Returns: Integer.
Returns 1 if successful, otherwise 0.

Examples: Director:
OK = baCloseWindow( WinHandle )

Authorware:
OK := baCloseWindow( WinHandle )

See also: baCloseApp

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



CloseApp
Description: baCloseApp closes the application owning a specified window.

Usage: Result = baCloseApp( WinHandle )

Arguments: Integer.
WinHandle is the handle of the window to close.

Returns: Void.

Examples: Director:
baCloseApp( WinHandle )

Authorware:
baCloseApp( WinHandle )

Notes: Not all applications react kindly to being closed by other applications, and 
may leave the system unstable - particularly in 16 bit Windows. If you use 
this function, be sure to test thoroughly. If possible, use the baCloseWindow
function instead.

See also: baCloseWindow

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetWindowTitle
Description: baSetWindowTitle sets the title of a specified window.

Usage: baSetWindowTitle( WinHandle, Title )

Arguments: Integer, string.
WinHandle is the handle of the window to change the title of. 
Title is the string to change the window title to.

Returns: Void.

Examples: Director:
baSetWindowTitle( Window, "Module 1" )

Authorware:
baSetWindowTitle( Window, "Module 1" )

Notes: If the WinHandle is 0, or is not the valid handle of a window, then the 
function will act on the active window.

See also: baWindowInfo

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  
Contents  



MoveWindow
Description: baMoveWindow moves or resizes the specified window.

Usage: baMoveWindow( WinHandle, Left , Top , Width , Height , Activate )

Arguments: Integer, integer, integer, integer, integer, integer.
WinHandle is the handle of the window to move. 
Left is the new left position of the window.
Top is the new top position of the window.
Width is the new width of the window.
Height is the new height of the window.
If Activate is true then the window will be activated.

Returns: Void.

Examples: Director:
baMoveWindow( Wnd, 20 , 20 , 400 , 400 , true )

Authorware:
baMoveWindow( Wnd, 20 , 20 , 400 , 400 , true )

Notes: If both Left and Top arguments are -1, then the windows current position will
not be changed.
If both Width and Height are -1, then the windows current size will not be 
changed.

See also: baWindowInfo

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



WindowToFront
Description: baWindowToFront brings the specified window to the front of all other 

windows.

Usage: Result = baWindowToFront( WinHandle )

Arguments: Integer.
WinHandle is the handle of the window to bring to the front. To bring the 
Director or Authorware window to the front, use the baWinHandle() 
function.

Returns: Integer.
Returns 1 if successful, otherwise 0.

Examples: Director:
OK = baWindowToFront( baWinHandle() )

Authorware:
OK := baWindowToFront( baWinHandle() )

See also: baWindowToBack
baWindowDepth
baSetWindowDepth

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



WindowToBack
Description: baWindowToBack sends the specified window to the back of all other 

windows.

Usage: Result = baWindowToBack( WinHandle )

Arguments: Integer.
WinHandle is the handle of the window to send to the back. To send the 
Director or Authorware window to the back, use the baWinHandle() 
function.

Returns: Integer.
Returns 1 if successful, otherwise 0.

Examples: Director:
OK = baWindowToBack( baWinHandle() )

Authorware:
OK := baWindowToBack( baWinHandle() )

See also: baWindowToFront
baWindowDepth
baSetWindowDepth

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



WindowDepth
Description: baWindowDepth gets the z-order depth of the specified window.

Usage: Result = baWindowDepth( WinHandle )

Arguments: Integer.
WinHandle is the handle to get the depth of.

Returns: Integer.
Returns the depth, or 0 if WinHandle doesn't exist.

Examples: Director:
depth = baWindowDepth( baWinHandle() )

Authorware:
depth := baWindowDepth( baWinHandle() )

Notes: Only windows that are visible are counted in the depth. If a window's state 
is hidden, then it will be ignored by this function. Windows that are set as 
topmost or stay-on-top will be counted before normal windows - even if 
they are minimised.

See also: baSetWindowDepth
baWindowToFront
baWindowToBack

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetWindowDepth
Description: baSetWindowDepth sets the z-order depth of the specified window.

Usage: baSetWindowDepth( WinHandle , Depth )

Arguments: Integer, integer.
WinHandle is the handle to set the depth of.
Depth is the new depth to set the window to.

Returns: Void.

Examples: Director:
baSetWindowDepth( baWinHandle() , 2 ) -- sets the Director window to 
below the top window, but in front of all other windows

Authorware:
baSetWindowDepth( 3124 , 5 )

Notes: Setting a depth greater than the number of visible windows is allowed - the 
window will be sent to the back of all other windows. 

See also: baWindowDepth
baWindowToFront
baWindowToBack

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



GetWindow
Description: baGetWindow gets a window that is related to another window.

Usage: Result = baGetWindow( WindowHandle , Relation )

Arguments: Integer, string.
WindowHandle is the handle of the window.
Relation is the type of relationship to look for. Can be one of the following:

"child" gets the first child window
"first" gets the first window
"last" gets the last window
"next" gets the next window
"previous" gets the previous window
"owner" gets the window's owner
"parent" gets the window's parent

Returns: Integer.
Returns the handle of the found window, or 0 if the requested window could
not be found.

Examples: Director:
wnd = baGetWindow( 2349 , "parent" )

Authorware:
wnd := baGetWindow( 2349 , "parent" )

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



WaitForWindow
Description: baWaitForWindow waits until a window is in a specified state, with an 

optional timeout.

Usage: Result = baWaitForWindow( WinHandle , State , TimeOut )

Arguments: Integer, string, integer
WinHandle is the handle of the window to wait for.
State is the state to wait for. Can be:

"inactive" waits until the window is inactive
"active" waits until the window is active
"closed" waits until the window is closed

TimeOut is the maximum amount of time to wait in ticks. A tick is equal to 
1/60th of a second. If TimeOut is 0, the function will wait indefinitely.

Returns: Integer.
Returns 0 if the window doesn't exist, or the timeout occurs before the 
window reaches the specified state.
Returns 1 if the window reached the specified state. 

Examples: Director:
OK = baWaitForWindow( baWinHandle() , "active" , 300 ) -- waits for the 
Director window to become active, for a maximum of 5 seconds

Authorware:
OK := baWaitForWindow( 3248, "closed" , 600 ) -- waits for the window 
3248 to be closed, for a maximum of 10 seconds 

Notes: The "inactive" option is useful for waiting until the Director/Authorware 
window is inactive after starting another program. When the 
Director/Authorware window is no longer active, then the other program 
has opened and has focus. 
For example, here is some code to open a readme file in Authorware, and 
wait until the user has finished with it.

if baOpenFile( "readme.txt" , "normal" ) > 32 then    -- open readme file
          wnd := baNextActiveWindow( 0 )    -- get handle of Notepad window
          baWaitForWindow( baWinHandle() , "active" , 0 )    -- wait till the 
Authorware window is active i.e. Notepad has been closed or user switched 
back to Authorware
          if baWindowExists( wnd ) then baCloseWindow( wnd )    -- close 
Notepad
    end if
end if

See also: baWaitTillActive
baNextActiveWindow
baActiveWindow

Information functions   System functions  
File functions   Window functions  



Alphabetical function list  

Contents  



WaitTillActive
Description: baWaitTillActive pauses execution until a specified window becomes the 

active one.

Usage: baWaitTillActive( WindowHandle )

Arguments: Integer.
WindowHandle is the handle of the window to wait for.

Returns: Void. 

Examples: Director:
baWaitTillActive( baWinHandle() ) -- wait till Director window becomes the 
active one

Authorware:
baWaitTillActive( baWinHandle() ) -- wait till Authorware window becomes 
the active one

Notes: This function is mainly intended to be used with the RunProgram function. 
The RunProgram function can pause execution until the jumped to program 
quits. This may cause a problem if the user switches back to the 
Authorware program without quitting the jumped to program. If you use the
RunProgram without the pause option, you can use this function (after a 
short wait) to resume the program if the user switches back to it.
This function is provided for compatibility with older versions. New 
applications should use the baWaitForWindow function. 

See also: baWaitForWindow
baNextActiveWindow
baActiveWindow

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



NextActiveWindow
Description: baNextActiveWindow returns the next window to become active.

Usage: Result = baNextActiveWindow( TimeOut )

Arguments: Integer
TimeOut is the maximum amount of time to wait in ticks. A tick is equal to 
1/60th of a second. If TimeOut is 0, the function will wait indefinitely.

Returns: Integer.
Returns the handle of the next active window.
Returns 0 if the timeout occurs before another window becomes active.

Examples: Director:
wnd = baNextActiveWindow( 300 ) -- waits for the next window to become 
active, for a maximum of 5 seconds

Authorware:
wnd := baNextActiveWindow( 600 )

Notes: This function will not operate with versions of Authorware earlier than 3.0.

The next active window is defined as the next window that isn't the window 
of the Director/Authorware calling program, or a dialog box or a splash 
screen. It would be typically used after a baRunProgram or baOpenFile call 
to get the handle of the window the program opens, and is particularly 
useful for applications such as Netscape and Acrobat that open splash 
screens.

Here is an example of opening an Acrobat file in Director, and closing it 
when the user is finished with it.

if baOpenFile( "readme.pdf" , "normal" ) > 32 then    -- open acrobat file
          wnd = baNextActiveWindow( 0 )    -- get handle of Acrobat window
          baWaitForWindow( baWinHandle() , "active" , 0 )    -- wait till the 
Director window is active i.e. Acrobat has been closed or user switched 
back to Director
          if baWindowExists( wnd ) then baCloseWindow( wnd )    -- close Acrobat
    end if
end if

See also: baWaitTillActive
baWaitForWindow
baActiveWindow

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  





WindowExists
Description: baWindowExists checks if a window handle is valid.

Usage: Result = baWindowExists( WinHandle )

Arguments: Integer.
WindowHandle is the handle of the window to check for.

Returns: Integer.
Returns 1 if the window exists, else 0.

 
Examples: Director:

OK = baWindowExists( 3248 )

Authorware:
OK := baWindowExists( 3248 )

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SendKeys
Description: baSendKeys sends a series of keystrokes to the active window.

Usage: Result = baSendKeys( Keys )

Arguments: String.
Keys is the string of keys to send. See the notes section for a full 
description.

Returns: Integer.
Returns an error code. 

0 success.
1 invalid character in string
2 window unavailable
3 unknown error
4 another SendKeys function is still under way

Examples: Director:
OK = baSendKeys( "hello" ) -- sends "hello"
OK = baSendKeys( "^C" ) -- sends Control C
OK = baSendKeys( "{F1}" ) -- sends the F1 key
OK = baSendKeys( "fname.txt{ENTER}" ) -- sends "fname.txt" then Enter

Authorware:
OK := baSendKeys( "hello" ) -- sends "hello"
OK := baSendKeys( "^C" ) -- sends Control C
OK := baSendKeys( "{F1}" ) -- sends the F1 key
OK := baSendKeys( "fname.txt{ENTER}" ) -- sends "fname.txt" then Enter

Notes: The string sent can contain any alphanumeric character. 

The keys sent will be case sensitive, and this may affect some programs. 
For example, sending "^C" may be interpreted by some programs as 
sending Control+Shift+c, others may treat it the same as "^c".

Use "@" for the Alt key, "~" for the Shift key, and "^" for the Control key. If 
you need to send these actual keys, use a combination of Shift and the 
required letter eg to send "@" use "~2".
Other special keys can be sent as follows: (include the curly brackets)

{F1}, {F2}, etc to {F12} 
{INSERT} 
{DELETE}

 {HOME}
{END}

 {PGUP}
 {PGDN}
 {TAB}

{ENTER}
    {BKSP}

{PRTSC}
{ESCAPE}
{LEFT}
{RIGHT}
{UP}
{DOWN}



Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SendMsg
Description: baSendMsg sends a Windows message to a window.

Usage: Result = baSendMsg( WindowHandle , Message , wParam , lParam , Wait )

Arguments: Integer, integer, integer, integer, integer.
WindowHandle is the handle of the window to send the message to.
Message is the message to send.
wParam is additional message information.
lParam is additional message information.
If Wait is true, execution is paused until the window processes the message.

Returns: Integer.
If Wait is true, the return value specifies the result of the message 
processing and depends on the message sent.
If Wait is false, returns 1 is the message was successfully posted to the 
window, else 0.

Examples: Director:
Result =    baSendMsg( 65535, 26 , 0, 0, true ) -- send a WM_WININCHANGE 
message to all windows.

Authorware:
Result :=    baSendMsg( 65535, 26, 0, 0, true )

Notes: To use this function, you will need access to Windows API information about 
messages.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



AddSysItems
Description: baAddSysItems is a function which adds the system menu, minimise and 

maximise buttons to a window.

Usage: baAddSysItems( WindowHandle, SystemMenu, MinBox, MaxBox )

Arguments: Integer, integer, integer, integer.
WindowHandle is the handle of the window to change.
If SystemMenu is true, the system menu is added.
If MinBox is true, the minimize button is added.
If MaxBox is true, the maximize button is added.

Returns: Void. 

Examples: Director:
baAddSysItems(baWinHandle() , false , true , false )

Authorware:
baAddSysItems(baWinHandle() , false , true , false )

Notes: Use this function with care. Some windows do not react kindly to having 
their window style changed. Some windows will ignore this call.
This function is limited in 32 bit Windows - only the Director/Authorware 
window can be changed, and you can only have all the items or none of the
items.

See also: baRemoveSysItems

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



RemoveSysItems
Description: baRemoveSysItems is a function which removes the system menu, 

minimise and maximise buttons from a window.

Usage: baRemoveSysItems( WindowHandle, SystemMenu, MinBox, MaxBox )

Arguments: Integer, integer, integer, integer.
WindowHandle is the handle of the window to change.
If SystemMenu is true, the system menu is removed.
If MinBox is true, the minimize button is removed.
If MaxBox is true, the maximize button is removed.

Returns: Void. 

Examples: Director:
baRemoveSysItems(1356 , true , false , false ) -- remove the system menu 
from window 1356

Authorware:
baRemoveSysItems(1356 , true , false , false ) -- remove the system menu 
from window 1356

Notes: Use this function with care. Some windows do not react kindly to having 
their window style changed. Some windows will ignore this call.
This function is limited in 32 bit Windows - only the Director/Authorware 
window can be changed, and you can only have all the items or none of the
items.

See also: baAddSysItems

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



ClipWindow
Description: baClipWindow removes the edges from a window.

Usage: baClipWindow( WindowHandle, Left, Top, Right, Bottom, Border, Remove )

Arguments: Integer, integer, integer, integer, integer, integer, integer.
WindowHandle is the handle of the window to change
Left is the amount of the window to remove from the left edge
Top is the amount of the window to remove from the top edge
Right is the amount of the window to remove from the right edge
Bottom is the amount of the window to remove from the bottom edge
If Border is true, then the window border is removed first
If Remove is true, then the window is clipped; if false then any previous 
clipping is removed and the window is restored to it's normal state.

Returns: Void. 

Examples: Director:
baClipWindow( 2459 , 10 , 20 , 10 , 10 , true, true )

Authorware:
baClipWindow( 2459 , 10 , 20 , 10 , 10 , true, true )

Notes: If you specify to remove the border first, then the window's menu bar and 
borders are removed first, then the window is clipped by the amount 
specified.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetParent
Description: baSetParent makes a window a child of another window.

Usage: baSetParent( WindowHandle, NewParent )

Arguments: Integer, integer.
WindowHandle is the handle of the window to change
NewParent is the handle of the window to make the parent

Returns: Void. 

Examples: Director:
baSetParent( 2459 , baStageHandle() ) -- make a window a child of the 
stage

Authorware:
baSetParent( 2459 , 5623 )

Notes: Not all programs like having their windows made a child of another 
program.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



WinHandle
Description: baWinHandle returns the main Director window or the Authorware 

presentation window.

Usage: Result = baWinHandle()

Arguments: Void.

Returns: Integer.

Examples: Director:
Win = baWinHandle()

Authorware:
Win := baWinHandle()

Notes: Use this function to get the Director window for use with the other window 
manipulation functions.

In the UCD version, this function returns the Authorware presentation 
window when packaged, but the main Authorware window during authoring.
When using Buddy window functions on the Authorware window, you should
use baWinHandle() rather than the system WindowHandle variable. 
This is necessary because in authoring mode, the presentation window is a 
child of the main Authorware window. This causes problems with functions 
that rely on a specific window being active, because Windows thinks the 
active window is actually the main Authorware window, not the 
presentation window. By using this function instead of the system 
WindowHandle variable, you can create a file that behaves correctly in both
authoring and runtime modes. 
For example, if the presentation window is active, baActiveWindow() and 
WindowHandle will not be the same during authoring, but will be when 
packaged.
However, baActiveWindow() and baWinHandle() will be the same in 
both authoring and packaged modes.
The baWinHandle function only works in version 3.0 or later of Authorware -
use the baAw2Window function in earlier versions.

See also: baStageHandle
baAw2Window

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



StageHandle
Description: baStageHandle returns the Director stage window.

Usage: Result = baStageHandle()

Arguments: Void.

Returns: Integer.

Examples: Director:
Win = baStageHandle()

Authorware:
N/A

Notes: Use this function to get the Director stage window. You should use 
baWinHandle if you want to use the other Buddy window manipulation 
functions on the Director window.

If used in Authorware, this function will return the main presentation 
window.

See also: baWinHandle

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



Aw2Window
Description: baAw2Window returns the handle of the Authorware presentation window.

Usage: Result = baAw2Window( WindowHandle )

Arguments: Integer.
WindowHandle is the system Authorware variable.

Returns: Integer.
Returns the handle of the Authorware presentation window when packaged;
the handle of the main Authorware window when authoring..

Examples: Director:
Not available

Authorware:
WinHandle := baAw2Window( WindowHandle )

Notes: This function is not available in the Xtra version. The baWinHandle function 
can be used to retrieve this value in the Xtra version.

This function will work in all versions of Authorware, however Versions 3.0 
or later of Authorware should use the baWinHandle function.

See also: baWinHandle

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SetWindowState
Description: baSetWindowState allows you to manipulate the specified window.

Usage: baSetWindowState( WinHandle, State )

Arguments: Integer, string.
WinHandle is the handle of the window to change. To change the Director or
Authorware window, use the baWinHandle() function.
State is the window's new state. Can be one of the following:

"Hidden" Hides the window and passes activation to another window. 
"Restored" Activates and displays a window. If the window is minimized or 

maximized, it is restored to its original size and position. 
"Normal" Activates a window and displays it in its current size and position. 
"Maximised" Activates a window and displays it as a maximized window. 
"Minimised" Activates a window and displays it as an icon. 
"MinNotActive" Displays a window as an icon. The window that is currently active 

remains active. 
"NotActive" Displays a window in its current state. The window that is currently

active remains active. 
"ShowNotActive" Displays a window in its most recent size and position. The 

window that is currently active remains active. 
"StayOnTop" Makes the window stay on top of all other windows.
"DontStayOnTop" Allows the window to go behind other windows.

Returns: Void.

Examples: Director:
baSetWindowState( baWinHandle(), "StayOnTop" )

Authorware:
baSetWindowState( baWinHandle(), "StayOnTop" )

Notes: If the WinHandle is 0, or is not the valid handle of a window, then the 
function will act on the active window.

See also: baWindowInfo
baActivateWindow

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



ActivateWindow
Description: baActivateWindow activates the specified window.

Usage: Result = baActivateWindow( WinHandle )

Arguments: Integer.
WinHandle is the handle of the window to activate. To activate the Director 
or Authorware window, use the baWinHandle() function.

Returns: Integer.
Returns 1 if successful, otherwise 0.

Examples: Director:
OK = baActivateWindow( baWinHandle() )

Authorware:
OK := baActivateWindow( baWinHandle() )

Notes: Microsoft has introduced a change to the way this function operates under 
Win 98 and NT 5. If your user is presently typing in a window, then you can 
not force another window to become the active one. Instead, the button for 
that window will flash on the Taskbar to alert the user that a program needs
attention.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



Virtual Key Codes

vk_BackSpace = 8 vk_Tab = 9 vk_Return = 13
vk_Shift = 16 vk_Control = 17 vk_Alt = 18
vk_Pause = 19 vk_CapsLock = 20 vk_Escape = 27
vk_Space = 32 vk_PageUp = 33 vk_PageDown = 34
vk_End = 35 vk_Home = 36 vk_Left = 37
vk_Up = 38 vk_Right = 39 vk_Down = 40
vk_PrintScreen = 44 vk_Insert = 45 vk_Delete = 46

vk_0 = 48 vk_1 = 49 vk_2 = 50
vk_3 = 51 vk_4 = 52 vk_5 = 53
vk_6 = 54 vk_7 = 55 vk_8 = 56
vk_9 = 57

vk_A = 65 vk_B = 66 vk_C = 67
vk_D = 68 vk_E = 69 vk_F = 70
vk_G = 71 vk_H = 72 vk_I = 73
vk_J = 74 vk_K = 75 vk_L = 76
vk_M = 77 vk_N = 78 vk_O = 79
vk_P = 80 vk_Q = 81 vk_R = 82
vk_S = 83 vk_T = 84 vk_U = 85
vk_V = 86 vk_W = 87 vk_X = 88
vk_Y = 89 vk_Z = 90

vk_LWin = 91 * vk_RWin = 92 * vk_Apps = 93 *
vk_NumPad0 = 96 vk_NumPad1 = 97 vk_NumPad2 = 98
vk_NumPad3 = 99 vk_NumPad4 = 100 vk_NumPad5 = 101
vk_NumPad6 = 102 vk_NumPad7 = 103 vk_NumPad8 = 104
vk_NumPad9 = 105 vk_Multiply = 106 vk_Add = 107
vk_Subtract = 109 vk_Decimal = 110 vk_Divide = 111

vk_F1 = 112 vk_F2 = 113 vk_F3 = 114
vk_F4 = 115 vk_F5 = 116 vk_F6 = 117
vk_F7 = 118 vk_F8 = 119 vk_F9 = 120
vk_F10 = 121 vk_F11 = 122 vk_F12 = 123
vk_F13 = 124 vk_F14 = 125 vk_F15 = 126
vk_F16 = 127

vk_NumLock = 144 vk_ScrollLock = 145 vk_LShift = 160 **
vk_RShift = 161 ** vk_LControl = 162 ** vk_RControl = 163 **
vk_LAlt = 164 ** vk_RAlt = 165 ** vk_SemiColon = 186
vk_Equals = 187 vk_Comma = 188 vk_UnderScore = 189
vk_Period = 190 vk_Slash = 191 vk_BackSlash = 220
vk_RightBrace = 221 vk_LeftBrace = 219 vk_Apostrophe = 222



* Available in 95/NT4 only
** Available in NT only

KeyIsDown 
KeyBeenPressed 

Contents  



Registration functions

About   shows information about Buddy API
Register   registers Buddy API
SaveRegistration   saves your registration information
GetRegistration   retrieves your registration information
Functions   retrieves the number of functions you are licenced to use

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



About
Description: baAbout shows information about Buddy API.

Usage: baAbout()

Arguments: Void.

Returns: Void.

Examples: Director:
baAbout()

Authorware:
baAbout()

Notes: This function displays a message box showing the version of Buddy API, 
who the version is registered to, and the number of functions licenced for 
use.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



Register
Description: baRegister registers Buddy API.

Usage: Result = baRegister( UserName , RegNumber )

Arguments: String, integer.
UserName is the user name you received when you registered.
RegNumber is your registration number.

Returns: Integer.
Returns the number of functions licenced for use.

Examples: Director:
funcs = baRegister( "My name" , 111111 )

Authorware:
funcs := baRegister( "My name" , 111111 )

Notes: You need to use this function before you call any other Buddy functions. For 
Director, the best place to do this is in your startMovie handler. In 
Authorware, place this into a calculation icon near the start of the flowline.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



SaveRegistration
Description: baSaveRegistration saves your Buddy API registration information

Usage: Result = baSaveRegistration( UserName , RegNumber )

Arguments: String, integer.
UserName is the user name you received when you registered.
RegNumber is your registration number.

Returns: Integer.
Returns 1 if successfully saved, else 0.

Examples: Director:
OK = baSaveRegistration( "My name" , 111111 )

Authorware:
OK := baSaveRegistration( "My name" , 111111 )

Notes: This function is designed to be used with the baGetRegistration function to 
make it easier for you to enter your registration code. In Director, you can 
use the Message window to save the information.
The function is only available in authoring mode.
This function is not included in the UCD version.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



GetRegistration
Description: baGetRegistration retrieves your Buddy API registration information

Usage: Result = baGetRegistration( )

Arguments: Void.

Returns: String.
Returns your registration information.

Examples: Director:
regstring = baGetRegistration( )

Authorware:
regstring := baGetRegistration( )

Notes: This function is designed to be used with the baSaveRegistration function to
make it easier for you to enter your registration code. The function also 
places the registration information on the clipboard ready to be pasted into 
the desired handler or calculation icon. In Director, you can use the 
Message window to get the information.
The function is only available in authoring mode.
This function is not included in the UCD version.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



Functions
Description: baFunctions returns the number of functions you are licenced to use

Usage: Result = baFunctions( )

Arguments: Void.

Returns: Integer.
Returns the number of licenced functions.

Examples: Director:
number = baFunctions( )

Authorware:
number := baFunctions( )

Notes: This function is not included in the UCD version.

Information functions   System functions  
File functions   Window functions  

Alphabetical function list  

Contents  



What's new in this release

The following functions are new in version 3.6
CopyFileProgress   copies a file while displaying a progress bar
CopyXFilesProgress  copies multiple files while displaying a progress bar
XCopyProgress   copies multiple files and sub-folders while displaying a progress bar
FolderSize   returns the size of a folder
GetDisk   shows a disk selection dialog
Prompt   shows a string prompt
MultiDisplayInfo   returns info about system monitors
SetMultiDisplay   set monitor resolution
MultiDisplayList   return list of system monitors
MoveOnReboot   moves a file on system reboot

The following changes are new in version 3.6
The text encryption routines now handle up to 24000 characters.
baFileDateEx now gets the dates for folders as well as files.
A new flag is added to baGetFilename- OFN_SHOWPLACES - 4194304 - which causes the 
dialog to show the Places bar, and also makes the dialog resizable.
The "poweroff" option was added to baExitWindows, to support the poweroff feature of 
newer computers.
More options added to baSysFolder.

The following functions were new in version 3.51
EjectDisk   ejects CD
LongFileName   returns the long version of a file name
Administrator   returns Administrator status
UserName   returns the current user log on name
ComputerName   returns the computer name

The following changes were new in version 3.51
baVersion( "os" ) returns "WinXP" on Windows XP
"build", "nt type" and "service pack" options added to baVersion
baDisableSwitching now works on NT, 2000 and XP
"rel left" and "rel top" options added baWindowInfo

The following bugs were fixed in version 3.51
A small memory leak under Director 8 was fixed.
baFileDate and baFileDateEx failed to work on files that Director had open.
A bug was fixed in baGetFilename that resulted in the truncation of the filenames returned 
when multiple files was selected and returned as a list.



The following functions were new in version 3.5
DiskList   returns list of available drives
DeleteIniEntry   deletes entry from an .ini file.
DeleteIniSection   deletes section from an .ini file.
PageSetupDlg   shows page setup dialog box
PrintDlg   shows printer dialog box
SetParent   makes a window a child of another window
ClipWindow   removes edges from window
MsgBoxEx   shows custom message box
SetDisplayEx   sets the screen size and depth
Environment   returns an environment variable
SetEnvironment   sets an environment variable
FileDateEx   returns the date of a file
ReadRegBinary   reads Registry binary value
WriteRegBinary   writes binary value to the Registry
ReadRegMulti   reads Registry multi string value
WriteRegMulti   writes multi string value to the Registry

The following changes were new in version 3.5
baVersion( "os" ) returns "WinME" on Windows ME.
Refresh option added to baScreenInfo.
baReadIni now returns a maximum of 32000 characters.
baDiskInfo now works with UNC drive names. 

The following bugs were fixed in version 3.5
Under Director 8.5, calling more than 256 functions would cause a crash.
Using baFindApp left a temporary file in the system temp folder under Win98.
Also, baFindApp could fail the second or third time it was used when testing for .htm files on 
Win98.
baGetFolder using the 'New folder' option could not create new folders less than 4 
characters long.

The following changes were new in version 3.4
Development of the 16 bit version has now stopped.
The .dll file has now been removed and the Xtra is delivered as a single file.
baVersion changed to report "Win2000".
There was a limit of 500 total characters in the returned filenames in baGetFilename when 
used with a multiple selection dialog. This has been increased to 12000 characters.

The following bugs were fixed in version 3.4
CpuInfo would sometimes report the incorrect value for AMD processors.
The "number" option for DiskInfo could return -1 if the serial number of the disk was a large 
number. This number is now returned as a float.



The following changes were new in version 3.31
Considerable changes made to the window handling functions for compatibility with Director 
7.02.
"vendor" and "model" options added for CpuInfo, and support for AMD chips added.
"client rect" and client "width" added to WindowInfo.
"menubar height" and "titlebar height" added to ScreenInfo
"common desktop", "common startup", "common start menu", "common groups" options 
added to SysFolder.
ReadRegString changed under NT so that a (Default) value with no value set returns an 
empty string rather than the passed in Default value

The following bugs were fixed in version 3.31
Under Windows NT, using FileExists on a file would prevent DeleteFolder subsequently 
deleting the folder containing the file.

The following changes were new in version 3.3
The Xtra version now contains an embedded copy of the DLL, and is distributed as a single 
file.
The GetFolder function has an option to allow the creation of a new folder.
The GetFilename function has the OFN_ADDEXTENSION option added.
Some internal changes to the FindApp function to work around problems with applications 
that are not registered correctly in the registry.
The XCopy and CopyXFiles functions now retain the case of the original file names in 32 bit.
FileList and FolderList now return the filenames with the same case as the original filenames 
in 32 bit.
An option to overwrite existing read-only files was added to the file copying functions.

The following bugs were fixed in version 3.3
FindFirstFile could report the wrong path to the file, if the second file found was in the same 
folder as the first file found.
XCopy crashed when copying a file which had an embedded version resource, and the 
"IfNewer" option is specified, and the file already exists in the destination folder.
baGetFilename showed a truncated dialog box when the stage/presentation window was 
smaller than about 350 pixels and the OFN_EXPLORER flag was used.

The following functions were new in version 3.2

FlushIni   forces Windows to write an ini file to disk.
FindFirstFile   searches for the first file matching a specification
FindNextFile   searches for the next file matching a specification
FindClose   finishes a search started with baFindFirstFile
XCopy   copies multiple files with wildcard matching, including sub-

directories.
XDelete   deletes files with wildcard matching, including sub-directories
FontList   returns a list of installed fonts
FontStyleList   returns a list of available styles for a truetype font
MakeShortcutEx   creates a Win95/NT shortcut
ResolveShortcut   returns the file a shortcut points to
RegKeyList   returns a list of sub-keys inside a registry key
RegValueList   returns a list of values inside a registry key
ChildWindowList   returns a list a window's child windows



GetFilename   displays a file selection dialog.
GetFolder   displays a folder selection dialog.
Sleep   pauses the calling Director/Authorware program
SystemTime  returns the current system time/date
SetSystemTime  sets the system time/date
PrinterInfo  returns information about the installed printer
SetPrinter  changes settings for the default printer
Shell   executes a file
RefreshDesktop  refreshes the desktop icons

Changes to existing functions in 3.2:
baVersion( "os" ) will return "Win98" on Windows 98
baVersion( "windows" ) will return "4.10" (32 bit) and "3.98" (16 bit) on Windows 98
baVersion( "qt3" ) will return the version of QuickTime 3 installed (32 bit only)
baGetVolume/SetVolume have been changed to use the Win32 mixer functions if they are 
available. Some new options are now available. These new options are 32 bit only.
These are:

"master" controls the master volume
"master mute" controls the master mute
"wave mute" controls the wave mute
"cd mute" controls the CD mute
"synth mute" controls the built-in synthesizer mute

Bugs fixed in 3.2
baFileVersion failed on Word 97 and PowerPoint 97.
baCopyFile failed when copying to the root directory of a drive (introduced in 3.12 release).
baCommandArgs could cut off the first letter of the argument if you define a file type to be 
associated with your projector/application, and a file of that type in a folder with a long file 
name is double-clicked in Explorer.
baFindApp failed when used on NT if the user did not have write access to the system folder.

The following functions were added in version 3.12

FileList   returns a list of files in a folder.
FolderList   returns a list of folders in a folder.
MemoryInfo   gets information about system memory

Changes to existing functions:
baShortFileName now works correctly under Windows 3.1.
Under NT, the registry functions now comply with the current user's security settings.

The following functions were added in version 3.11

PMSubGroupList  returns list of groups inside another Start Menu group
DeleteReg  deletes Registry entry

Changes to existing functions:



baFolderExists failed if used on an empty floppy disk, or an empty directory on a Novell 
server. This also caused baCopyFile to fail. This has been fixed.
baMoveWindow did not work as documented in the help file. Using -1 for the new position 
now keeps the windows current position.
baSendKeys has the cursor keys added - LEFT, RIGHT, DOWN, UP.
The free and size options for baDiskInfo have been updated to work with FAT32 drives larger 
than 2 gb.
baCopyXFiles now gives more 'time slices' to the system during the copy, This allows 
Windows and Director to update their displays more frequently.

The following functions were added in version 3.1

PMGroupList  returns list of Program Manager or Start Menu groups
PMIconList  returns list of icons in a Program Manager or Start Menu group
WindowList   returns a list of all windows with given title or class
WaitForWindow   waits until a specified window is in a specified state
NextActiveWindow   returns the next window to become active
WindowExists   checks that a window handle is valid
WindowDepth   gets the z-order depth of a window
SetWindowDepth   sets the z-order depth of a window
CloseApp   closes the application owning a window
StageHandle   returns the Director stage window
Aw2Window   returns the Authorware presentation window
FileSize   returns the size of a file
FileAttributes   returns the attributes of a file
SetFileAttributes   sets the attributes of a file
Functions   retrieves the number of functions you are licenced to use

Changes to existing functions in version 3.1:
baFileExists now reports hidden files as existing in the 16 bit Xtra and UCD.
baFindApp checks if Acrobat Reader 3 has been installed into a folder containing a space and
uses a different method to locate it if it does.
baSetScreenSaver converts the long file name of a screen saver in Windows 95 to a short file
name before installing it.

Changes in version 3.03:
Added "restart" option to baExitWindows for 32 bit Xtra and UCD in Windows 95.
Internal changes to baCopyFile and baInstallFont to provide consistency between 16 and 32 
bit versions.

Changes in version 3.02:
Added baWinHandle to UCD version..

Bugs fixed in version 3.01:
The Director window did not redraw itself during baWaitTillActive.
The window functions (baMoveWindow, baActivateWindow, etc) did not always work 
correctly in Windows NT with the 32 bit Xtra.

Other changes in version 3.01:



The maximum size string returned by the baReadIni and baReadRegString functions 
increased to 2000 characters.

Contents  




